Skip to main content
Log in

Nonabelian Ramified Coverings and \(L^p\)-boundedness of Bergman Projections in \({\mathbb {C}}^2\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this work,we explore the theme of \(L^p\)-boundedness of Bergman projections of domains that can be covered, in the sense of ramified coverings, by “nice” domains (e.g., strictly pseudoconvex domains with real analytic boundary). In particular, we focus on two-dimensional normal ramified coverings whose covering group is a finite unitary reflection group. In an infinite family of examples, we are able to prove \(L^p\)-boundedness of the Bergman projection for every \(p\in (1,\infty )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arreche, C.E., Williams, N.F.: Normal reflection subgroups of complex reflection groups. J. Inst. Math. Jussieu (2021). https://doi.org/10.1017/S1474748021000323

    Article  MATH  Google Scholar 

  2. Békollé, D.: Projections sur des espaces de fonctions holomorphes dans des domaines plans. Can. J. Math. 38(1), 127–157 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, D.E.: Irregularity of the Bergman projection on a smooth bounded domain in \(\mathbb{C} ^2\). Ann. Math. 119, 431–436 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bekollé, D., Bonami, A.: Inégalités à poids pour le noyau de Bergman. C. R. Acad. Sci. Paris Sér. A-B 286(18), A775–A778 (1978)

    MATH  Google Scholar 

  5. Bender, C., Chakrabarti, D., Edholm, L., Mainkar, M.: \(L^p\)-regularity of the Bergman projection on quotient domains. Can. J. Math. 74, 732–772 (2021)

    Article  MATH  Google Scholar 

  6. Bekollé, D.: Inégalités à poids pour le projecteur de bergman dans la boule unité de \({\mathbb{C} }^n\). Studia Math. 71(3), 305–323 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bekollé, D.: Inégalités \(L^{p}\) pour les projecteurs de Bergman de certains domaines de \({\mathbb{C} }^{2}\). C. R. Acad. Sci. Paris Sér. I Math. 294(12), 395–397 (1982)

    MathSciNet  MATH  Google Scholar 

  8. Bell, S.R.: Proper holomorphic mappings and the Bergman projection. Duke Math. J. 48(1), 167–175 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bell, S.R.: The Bergman kernel function and proper holomorphic mappings. Trans. Am. Math. Soc. 270(2), 685–691 (1982)

    MathSciNet  MATH  Google Scholar 

  10. Bonami, A., Lohoué, N.: Projecteurs de Bergman et Szegö pour une classe de domaines faiblement pseudo-convexes et estimations \( L^{p} \). Compos. Math. 46(2), 159–226 (1982)

    MATH  Google Scholar 

  11. Bredon, G.E.: Topology and geometry, vol. 139. Springer, New York (1993)

  12. Charpentier, P., Dupain, Y.: Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form. Publ. Mat. 50(2), 413–446 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math. 77(4), 778–782 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chirka, E.M.: (soviet series), vol. 46. Kluwer Academic Publishers Group, Dordrecht (1989)

  15. Chen, L., Krantz, S.G., Yuan, Y.: \(L^p\) regularity of the Bergman projection on domains covered by the polydisc. J. Funct. Anal. 279(2), 108522 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dall’Ara, G.M.: Around \( {L}^1\)(un)boundedness of Bergman and Szegő projections. J. Funct. Anal. (2022). https://doi.org/10.1016/j.jfa.2022.109550

    Article  MathSciNet  MATH  Google Scholar 

  17. Edholm, L.: Bergman theory of certain generalized Hartogs triangles. Pac. J. Math. 284(2), 327–342 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Edholm, L., McNeal, J.: The Bergman projection on fat Hartogs triangles: \(L^p\) boundedness. Proc. Am. Math. Soc. 144(5), 2185–2196 (2016)

    Article  MATH  Google Scholar 

  19. Edholm, L.D., McNeal, J.D.: Bergman subspaces and subkernels: degenerate \(L^p\) mapping and zeroes. J. Geom. Anal. 27(4), 2658–2683 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Françis, G., Hanges, N.: Analytic regularity for the Bergman kernel, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1998), Univ. Nantes, Nantes, Exp. No. V, 11 (1998)

  21. Forelli, F., Rudin, W.: Projections on spaces of holomorphic functions in balls. Indiana Univ. Math. J. 24(6), 593–602 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghosh, G.: The weighted Bergman spaces and pseudoreflection groups, 1–23 (2021). arXiv preprint arXiv:2104.14162

  23. Ghosh, G., Narayanan, E.: Toeplitz operators on the Bergman spaces of quotient domains, 1–24 (2022). arXiv preprint arXiv:2202.03184

  24. Huo, Z., Wagner, N.A., Wick, B.D.: A Békollé-Bonami class of weights for certain pseudoconvex domains. J. Geom. Anal. 31(6), 6042–6066 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huo, Z., Wagner, N.A., Wick, B.D.: Bekollé-Bonami estimates on some pseudoconvex domains. Bull. Sci. Math. 170, 102993 (2021)

    Article  MATH  Google Scholar 

  26. Krantz, S.G., Monguzzi, A., Peloso, M.M., Stoppato, C.: Irregularity of the Bergman projection on smooth unbounded worm domains, 1–12 (2022). arXiv preprint arXiv:2204.05111

  27. Krantz, S.G., Peloso, M.M.: The Bergman kernel and projection on non-smooth worm domains. Houst. J. Math. 34(3), 873–950 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Krantz, S.G., Peloso, M.M., Stoppato, C.: Bergman kernel and projection on the unbounded Diederich-Fornæss worm domain. Ann. Sc. Norm. Super. Pisa Cl. Sci. 16(4), 1153–1183 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Krantz, S.G.: Geometric analysis of the Bergman kernel and metric, vol. 268. Springer, New York (2013)

    MATH  Google Scholar 

  30. Lanzani, L., Stein, E.M.: The Bergman projection in \( L^p\) for domains with minimal smoothness. Ill. J. Math. 56(1), 127–154 (2012)

    MATH  Google Scholar 

  31. Lehrer, G.I., Taylor, D.E.: Unitary reflection groups, vol. 20. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  32. McNeal, J.D.: The Bergman projection as a singular integral operator. J. Geom. Anal 4(1), 91–103 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Monguzzi, A.: Holomorphic function spaces on the Hartogs triangle. Math. Nachr. 294(11), 2209–2231 (2021)

    Article  MathSciNet  Google Scholar 

  34. McNeal, J.D., Stein, E.M.: Mapping properties of the Bergman projection on convex domains of finite type. Duke Math. J. 73(1), 177–199 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nagel, A., Pramanik, M.: Bergman spaces under maps of monomial type. J. Geom. Anal. 31(5), 4531–4560 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nagel, A., Rosay, J.-P., Stein, E.M., Wainger, S.: Estimates for the Bergman and Szegő kernels in \(\mathbb{C} ^2\). Ann. Math. 129, 113–149 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. Phong, D.H., Stein, E.M.: Estimates for the Bergman and Szegö projections on strongly pseudoconvex domains. Duke Math. J. 44(3), 695–704 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rudin, W.: Function theory in the unit ball of \({\mathbb{C} }^n\), vol. 241. Springer, New York (1980)

    Book  MATH  Google Scholar 

  39. Rudin, W.: Proper holomorphic maps and finite reflection groups. Indiana Univ. Math. J. 31(5), 701–720 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274–304 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zeytuncu, Y.E.: \(L^p\) regularity of weighted Bergman projections. Trans. Am. Math. Soc. 365, 2959–2976 (2013)

    Article  MATH  Google Scholar 

  42. Zeytuncu, Y.E.: A survey of the \(L^p\) regularity of the Bergman projection. Complex Anal. Synerg (2020). https://doi.org/10.1007/s40627-020-00056-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. E. Arreche and N. F. Williams for some helpful comments on normal reflection subgroups of f.u.r.g.’s. The authors would also like to acknowledge the hospitality of Marco M. Peloso and the Department of Mathematics of Università Statale di Milano, where part of the research work was conducted in November 2021. G. Dall’Ara would like to acknowledge the financial support of the Istituto Nazionale di Alta Matematica “F. Severi”, and the A. Monguzzi would like to acknowledge the support of the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers” (Project Number: 73342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Dall’Ara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Theorem A.1

Let \(B_2\) be the unit ball in \({\mathbb {C}}^2\) and let \(\pi : B_2\dashrightarrow \pi (B_2)=:D\) be the normal ramified covering defined by

$$\begin{aligned} \pi (z_1,z_2)=(z_1^2,z_2) \end{aligned}$$

with associated covering group \(G=\{r,{{\,\textrm{id}\,}}\}\), where \(r(z_1,z_2)=(-z_1,z_2)\). Then, the integral operator with positive kernel \(|K_{G,p}|\) is \(L^p(B_2)\)-bounded for every \(p\in (1,\infty )\).

Proof

Up to an immaterial positive multiplicative constant, we have

$$\begin{aligned} K_{G,p}(z,w)&= |z_1|^{\frac{2}{p}-1}\Big (\frac{1}{(1-z_1\overline{w}_1-z_2{{\overline{w}}}_2)^3}-\frac{1}{(1+z_1{{\overline{w}}}_1-z_2\overline{w}_2 )^3}\Big )|w_1|^{1-\frac{2}{p}}, \end{aligned}$$

where we are writing \(z=(z_1,z_2)\) and \(w=(w_1,w_2)\).

Set \({\mathcal {G}}=\{(z,w)\in B_2\times B_2: |z_1 \overline{w}_1|\ge \frac{1}{2}|1-z_2{{\overline{w}}}_2|\}\). In this region

$$\begin{aligned} \frac{|z_1|}{|w_1|}\le 2\frac{|z_1|^2}{|1-z_2\overline{w_2}|}\le 2\frac{1-|z_2|^2}{(1-|z_2||w_2|)}\le 4 \end{aligned}$$

and an identical bound holds for \(\frac{|w_1|}{|z_1|}\). Thus, on \({\mathcal {G}}\) the factor \((|z_1|/|w_1|)^{\frac{2}{p}-1}\) is bounded and

$$\begin{aligned} |K_{G,p}(z,w)|\le C(p) \Big (|K_{B_2}(z,w)|+|K_{B_2}(z,rw)| \Big ) \end{aligned}$$
(20)

where \(K_{B_2}\) is the Bergman kernel of the unit ball.

On the complement \((B_2\times B_2)\backslash {\mathcal {G}}\),we take advantage of the power series expansion

$$\begin{aligned} \frac{1}{(1-\alpha )^3}=\sum _{k=0}^{+\infty }\frac{(k+1)(k+2)}{2}\alpha ^k \qquad (|\alpha |<1), \end{aligned}$$

which allows to write

$$\begin{aligned} \frac{1}{(1-z_1{{\overline{w}}}_1-z_2\overline{w}_2)^3}=\frac{1}{(1-z_2\overline{w}_2)^3}\sum _{k=0}^{\infty }\frac{(k+1)(k+2)}{2} \left( \frac{z_1{{\overline{w}}}_1}{1-z_2{{\overline{w}}}_2}\right) ^k \end{aligned}$$

and an analogous identity for the term \((1+z_1\overline{w}_1-z_2{{\overline{w}}}_2)^{-3}\). We get

$$\begin{aligned} K_{G,p}(z,w)&=|z_1|^{\frac{2}{p}-1}|w_1|^{1-\frac{2}{p}}\frac{1}{(1-z_2{{\overline{w}}}_2)^3}\sum _{k=0}^{\infty }\frac{(k+1)(k+2)}{2}\frac{(z_1{{\overline{w}}}_1)^{k}}{(1-z_2{{\overline{w}}}_2)^k}\big (1-(-1)^{k}\big )\\&=|z_1|^{\frac{2}{p}-1}|w_1|^{1-\frac{2}{p}}\frac{z_1\overline{w}_1}{(1-z_2\overline{w}_2)^4}\sum _{k=0}^{\infty }(2k+2)(2k+3)\frac{(z_1\overline{w}_1)^{2k}}{(1-z_2{{\overline{w}}}_2)^{2k}}. \end{aligned}$$

Since \(C:=\sum \limits _{k=0}^{\infty }\frac{(2k+2)(2k+3)}{4^k}<+\infty \), we obtain

$$\begin{aligned} |K_{G,p}(z,w)|\le C \frac{|z_1|^{\frac{2}{p}}|w_1|^{2-\frac{2}{p}}}{|1-z_2{{\overline{w}}}_2|^4}\qquad \forall (z,w)\notin {\mathcal {G}}. \end{aligned}$$
(21)

Notice that both powers in the numerator are positive. Hence, we may use \(|z_1|^2\le 1-|z_2|^2\le 2|1-z_2{{\overline{w}}}_2|\) and the similar estimate \(|w_1|^2\le 2|1-z_2{{\overline{w}}}_2|\), to bound the RHS of (21) with a constant times \(\frac{1}{|1-z_2{{\overline{w}}}_2|^3}\).

We finally observe that, on the complement of \({\mathcal {G}}\), \(|1-z_1{{\overline{w}}}_1-z_2{{\overline{w}}}_2|\le \frac{3}{2}|1-z_2{{\overline{w}}}_2|\) which allows to conclude that on this set, we have

$$\begin{aligned} |K_{G,p}(z,w)|\le C\frac{1}{|1-z_1{{\overline{w}}}_1-z_2\overline{w}_2|^3}=C'|K_{B_2}(z,w)|. \end{aligned}$$
(22)

The conclusion follows from (20) and (22) and the well-known \(L^p\)-boundedness, for \(p\in (1,\infty )\), of the integral operator with kernel \(|K_{B_2}(z,w)|\) (see, e.g., Chapter 7 of [38]). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dall’Ara, G., Monguzzi, A. Nonabelian Ramified Coverings and \(L^p\)-boundedness of Bergman Projections in \({\mathbb {C}}^2\). J Geom Anal 33, 52 (2023). https://doi.org/10.1007/s12220-022-01109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01109-5

Keywords

Mathematics Subject Classification

Navigation