Skip to main content
Log in

Bergman Subspaces and Subkernels: Degenerate \(L^p\) Mapping and Zeroes

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Regularity and irregularity of the Bergman projection on \(L^p\) spaces is established on a natural family of bounded, pseudoconvex domains. The family is parameterized by a real variable \(\gamma \). A surprising consequence of the analysis is that, whenever \(\gamma \) is irrational, the Bergman projection is bounded only for \(p=2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axler, S.: Bergman spaces and their operators. Surv. Some Recent Results Oper. Theory 1, 1–50 (1988)

    MathSciNet  MATH  Google Scholar 

  2. Barrett, D.E.: Irregularity of the Bergman projection on a smooth bounded domain in \(\mathbb{C}^2\). Ann. Math. 119, 431–436 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, D.E., Sahutoglu, S.: Irregularity of the Bergman projection on worm domains. Mich. Math. J. 61, 187–198 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bell, S.R.: The Bergman kernel function and proper holomorphic mappings. Trans. Am. Math. Soc. 270(2), 685–691 (1982)

    MathSciNet  MATH  Google Scholar 

  5. Boas, H.P.: The Lu Qi-Keng conjecture fails generically. Proc. Am. Math. Soc. 124(7), 2021–2027 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boas, H.P.: Lu Qi-Keng’s problem. J. Korean Math. Soc. Several complex variables (Seoul, 1998) 37(2): 253–267 (2000)

  7. Chakrabarti, D., Zeytuncu, Y.: \({L}^p\) mapping properties of the Bergman projection on the Hartogs triangle. Proc. Am. Math. Soc. 144(4), 1643–1653 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, L.: The \({L}^p\) boundedness of the Bergman projection for a class of bounded Hartogs domains. (preprint) (2014)

  9. D’Angelo, J.P.: Several Complex Variables and the Geometry of Real Hypersurfaces. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1993)

    MATH  Google Scholar 

  10. Diederich, K., Fornæss, J.E.: Pseudoconvex domains: an example with nontrivial Nebenhülle. Math. Ann. 225(3), 275–292 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Edholm, L.: Bergman theory of certain generalized Hartogs triangles. Pac. J. Math. 284(2), 327–342 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Edholm, L., McNeal, J.: The Bergman projection on fat Hartogs triangles: \({L}^p\) boundedness. Proc. Am. Math. Soc. 144(5), 2185–2196 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Forelli, F., Rudin, W.: Projections on spaces of holomorphic functions in balls. Ind. Univ. Math. J. 24, 593–602 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hardy, G.H., Wright, E.: An Introduction to the Theory of Numbers, 4th edn. Clarendon Press, Oxford (1960)

    MATH  Google Scholar 

  15. Jarnicki, M., Pflug, P.: First Steps in Several Complex Variables: Reinhardt Domains. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2008)

    Book  MATH  Google Scholar 

  16. Krantz, S.G., Peloso, M.: The Bergman kernel and projection on non-smooth worm domains. Houst. J. Math. 34, 873–950 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Lanzani, L., Stein, E.M.: Szegö and Bergman projections on non-smooth planar domains. J. Geom. Anal. 14(1), 63–86 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lanzani, L., Stein, E.M.: The Bergman projection in \({L}^p\) for domains with minimal smoothness. Ill. J. Math. 56(1), 127–154 (2012)

    MathSciNet  MATH  Google Scholar 

  19. McNeal, J.D.: Boundary behavior of the Bergman kernel function in \(\mathbb{C}^2\). Duke Math. J. 58(2), 499–512 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. McNeal, J.D.: The Bergman projection as a singular integral operator. J. Geom. Anal. 4, 91–104 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. McNeal, J.D., Stein, E.M.: Mapping properties of the Bergman projection on convex domains of finite type. Duke Math. J. 73(1), 177–199 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nagel, A., Rosay, J.-P., Stein, E.M., Wainger, S.: Estimates for the Bergman and Szegő kernels in \(\mathbb{C}^2\). Ann. Math. 129(1), 113–149 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Phong, D.H., Stein, E.M.: Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains. Duke Math. J. 44(3), 695–704 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rudin, W.: Function theory in the unit ball in \(\mathbb{C}^n\), vol. 241 of Grundlehren der Mathematischen Wissenschaften. Springer, New York (1980)

    Google Scholar 

  25. Zeytuncu, Y.: \({L}^p\) and Sobolev regularity of weighted Bergman projections. PhD thesis, Ohio State University (2010)

  26. Zeytuncu, Y.: \({L}^p\) regularity of weighted Bergman projections. Trans. Am. Math. Soc. 365(6), 2959–2976 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, K.: Spaces of holomorphic functions in the unit ball, vol. 226 of Graduate Texts in Mathematics. Springer, New York (2005)

    Google Scholar 

  28. Zwonek, W.: On Bergman completeness of pseudoconvex Reinhardt domains. Ann. Fac. Sci. Toulouse Math. 8(6), 537–552 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zwonek, W.: Completeness, Reinhardt domains, and the method of complex geodesics in the theory of invariant functions. Diss. Math. 388, 1–103 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research of the second author was partially supported by a National Science Foundation grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. McNeal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edholm, L.D., McNeal, J.D. Bergman Subspaces and Subkernels: Degenerate \(L^p\) Mapping and Zeroes. J Geom Anal 27, 2658–2683 (2017). https://doi.org/10.1007/s12220-017-9777-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9777-4

Keywords

Mathematics Subject Classification

Navigation