Skip to main content
Log in

Harmonic Bergman Theory on Punctured Domains

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

For bounded domains in \({\mathbb {R}}^n\) with smooth boundary that are punctured by removing a point, we give a complete description of when basic duality and approximation properties hold for harmonic Bergman spaces and determine the \(L^p\) mapping properties of the harmonic Bergman projection. Our findings reveal some unexpected dimension-dependent behavior of harmonic Bergman spaces that can occur for non-smooth domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The argument relies only on the easier case \(p=2\) in Lemma 2.2 and Proposition 2.3.

  2. In this context, reflexivity means that \((L_h^p (\Omega ))^{\star } = L_h^{p^{\prime }} (\Omega )\) if and only if \((L_h^{p^{\prime }} (\Omega ))^{\star } = L_h^p (\Omega )\).

  3. The Bergman theory for punctured domains in \({\mathbb {C}}^n\) is the same as for smooth domains, since any holomorphic function on a punctured domain extends holomorphically to the unpunctured domain.

  4. The same interval of p also applies to any simply connected local graph domain in \({\mathbb {C}}\) [12, §3].

  5. For the punctured unit ball in \({\mathbb {R}}^3\), this function is the constant 3/2.

  6. Alternatively, if the duality property held for some \(p<\frac{n}{n-2}\), then necessarily \(L_h^p(\Omega _n^*)=L_h^p(\Omega _n)\) for that p which contradicts Proposition 5.4.

References

  1. Axler, S., Bourdon, P., Ramey, W.: Harmonic function theory. Second edition. Graduate Texts in Mathematics, vol. 137. Springer-Verlag, New York (2001)

  2. Barrett, D., Şahutoǧlu, S.: Irregularity of the Bergman projection on worm domains in \({\mathbb{C}}^n\). Michigan Math. J. 61(1), 187–198 (2012)

  3. Chakrabarti, D., Edholm, L.D., McNeal, J.D.: Duality and approximation of Bergman spaces. Adv. Math. 341, 616–656 (2019)

    Article  MathSciNet  Google Scholar 

  4. Chakrabarti, D., Zeytuncu, Y.: \(L^p\) mapping properties of the Bergman projection on the Hartogs triangle. Proc. Am. Math. Soc. 144(4), 1643–1653 (2016)

    Article  Google Scholar 

  5. Chen, L.: The \(L^p\) boundedness of the Bergman projection for a class of bounded Hartogs domains. J. Math. Anal. Appl. 448(1), 598–610 (2017)

    Article  MathSciNet  Google Scholar 

  6. Coffman, C.V., Cohen, J.: The duals of harmonic Bergman spaces. Proc. Am. Math. Soc. 110(3), 697–704 (1990)

    Article  MathSciNet  Google Scholar 

  7. Edholm, L.D.: Bergman theory of certain generalized Hartogs triangles. Pacific J. Math. 284(2), 327–342 (2016)

    Article  MathSciNet  Google Scholar 

  8. Edholm, L.D., McNeal, J.D.: The Bergman projection on fat Hartogs triangles: \(L^p\) boundedness. Proc. Am. Math. Soc. 144(5), 2185–2196 (2016)

    Article  Google Scholar 

  9. Edholm, L.D., McNeal, J.D.: Sobolev mapping of some holomorphic projections. J. Geom. Anal. 30, 1293–1311 (2020)

    Article  MathSciNet  Google Scholar 

  10. Huo, Z., Wick, B.D.: Weak-type estimates for the Bergman projection on the polydisc and the Hartogs triangle. Bull. Lond. Math. Soc. (2020). https://doi.org/10.1112/blms.12369

    Article  MathSciNet  MATH  Google Scholar 

  11. Kang, H., Koo, H.: Estimates of the harmonic Bergman kernel on smooth domains. J. Funct. Anal. 185(1), 220–239 (2001)

    Article  MathSciNet  Google Scholar 

  12. Lanzani, L., Stein, E.M.: Szegö and Bergman projections on non-smooth planar domains. J. Geom. Anal. 14(1), 63–86 (2004)

    Article  MathSciNet  Google Scholar 

  13. Ligocka, E.: Estimates in Sobolev norms \(\Vert \cdot \Vert _p^s\) for harmonic and holomorphic functions and interpolation between Sobolev and Hölder spaces of harmonic functions. Studia Math. 86(3), 255–271 (1987)

    Article  MathSciNet  Google Scholar 

  14. Ramey, W., Yi, H.: Harmonic Bergman functions on half-spaces. Trans. Am. Math. Soc. 348(2), 633–660 (1996)

    Article  MathSciNet  Google Scholar 

  15. Stroethoff, K.: Harmonic Bergman spaces, Holomorphic Spaces (Berkeley, CA, 1995). Math. Sci. Res. Inst. Publ., vol. 33, 51–63. Cambridge Univ. Press, Cambridge (1998)

  16. Zhao, Z.G.: The harmonic Bergman kernels for punctured domains. Acta Math. Sin. (Engl. Ser.) 30(11), 1977–1988 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuda Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koenig, K.D., Wang, Y. Harmonic Bergman Theory on Punctured Domains. J Geom Anal 31, 7410–7435 (2021). https://doi.org/10.1007/s12220-020-00542-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00542-8

Keywords

Mathematics Subject Classification

Navigation