Skip to main content
Log in

Semiclassical States of Fractional Choquard Equations with Exponential Critical Growth

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

This paper is concerned with the following one-dimensional fractional Choquard equation

$$\begin{aligned} \varepsilon (-\Delta )^{1/2}u+V(x)u=\varepsilon ^{\mu }\left( I_{\mu }*F(u)\right) f(u), \ \ x\in \mathbb {R},\end{aligned}$$

where \((-\Delta )^{1/2}\) denotes the 1/2-Laplacian opertor, \(I_{\mu }\) is the Riesz potential with \(0<\mu <1\), V is a continuous real function satisfying some mild assumptions and \(f\in {\mathcal {C}}(\mathbb {R},\mathbb {R})\) is a nonlinearity with exponential critical growth. The present paper has three typical features. Firstly, using a weaker assumption on f, we establish the energy inequality to recover the compactness. Second, without the strictly monotone condition and by establishing some new tricks, we obtain the existence of ground state solutions when \(\varepsilon \) is small enough. Finally, we take advantage of some refined analysis techniques to get over the difficulty carried by the nonlocality of the 1/2-Laplacian and prove the concentration of the ground state solutions when \(\varepsilon \rightarrow 0\). Our results extend and complement the results of Alves et al. (J Differ Equ 261:1933–1972, 2016) and Clemente et al. (Z Angew Math Phys 72:16, 2021].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423–443 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, C.O., Cassani, D., Tarsi, C., Yang, M.B.: Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \({\mathbb{R} }^{2}\). J. Differ. Equ. 261, 1933–1972 (2016)

    Article  MATH  Google Scholar 

  3. Alves, C.O., Figueiredo, G.M.: Multiplicity of positive solutions for a class of quasilinear problems in \({\mathbb{R} }^{N}\) via penalization method. Adv. Nonlinear Stud. 5, 551–572 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alves, C.O., do Ó, J. M., Miyagaki, O. H.: Concentration phenomena for fractional elliptic equations involving exponential critical growth. Adv. Nonlinear Stud. 16, 843–861 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alves, C.O., Ledesma, C.T.: Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Commun. Pure. Appl. Anal. 20, 2065–2100 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alves, C.O., Yang, M.: Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method. Proc. R. Soc. Edinburgh Sect. A 146, 23–58 (2016)

    Article  MATH  Google Scholar 

  7. Ambrosio, V.: Multiplicity and concentration results for a fractional Choquard equation via penalization method. Potent. Anal. 50, 55–82 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L., Silvestre, L.: An extension problems related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

  9. Chen, S., Tang, X.: On the planar Schrödinger equation with indefinite linear part and critical growth nonlinearity. Calc. Var. Partial Differ. Equa. 60, 95 (2021)

    Article  MATH  Google Scholar 

  10. Chen, P., Tang X.: Ground states for a system of nonlinear Schrödinger equations with singular potentials. Discret. Contin. Dyn. Syst. https://doi.org/10.3934/dcds.2022088

  11. Chen, P., Meng, L., Tang X.: Nonstationary homoclinic orbit for an infinite-dimensional fractional reaction-diffusion system. Discret. Contin. Dyn. Syst. Ser. B. https://doi.org/10.3934/dcdsb.2021279

  12. Cingolani, S., Secchi, S., Squassina, M.: Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinbur. Sect. A 140, 973–1009 (2010)

    Article  MATH  Google Scholar 

  13. Clemente, R., de Albuquerque, J.C., Barboza, E.: Existence of solutions for a fractional Choquard-type equation in \({\mathbb{R}}\) with critical exponential growth. Z. Angew. Math. Phys. 72, 16 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. do Ó, J. M., Miyagaki, O. H., Squassina, M.: Nonautonomous fractional problems with exponential growth,. Nonlinear Differ. Equ. Appl. 22, 1395–1410 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Floer, A., Weinstein, A.: Nonspreading wave pachets for the packets for the cubic Schrödinger with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frank, R., Lenzmann, E.: Uniqueness of non-linear ground states for fractional laplacians in \({\mathbb{R} }\). Acta Math. 210, 261–318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, Z., Tang, X., Chen, S.: On existence and concentration behavior of positive ground state solutions for a class of fractional Schrödinger-Choquard equations. Z. Angew. Math. Phys. 69, 122 (2018)

    Article  MATH  Google Scholar 

  20. Giacomoni, J., Mishra, P.K., Sreenadh, K.: Fractional elliptic equations with critical exponential nonlinearity. Adv. Nonlinear Anal. 5, 57–74 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Iula, S., Maalaoui, A., Martinazzi, L.: A fractional Moser–Trudinger type inequality in one dimension and its critical points. Differ. Integral Equ. 29, 455–492 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Kozono, H., Sato, T., Wadade, H.: Upper bound of the best constant of a Trudinger–Moser inequality and its application to a Gagliardo–Nirenberg inequality. Indiana Univ. Math. J. 55, 1951–1974 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268(4–6), 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  25. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, G.H., Yu, J.S.: Homoclinic solutions of periodic discrete Schrödinger equations with local superquadratic conditions. SIAM J. Math. Anal. 54, 1966–2005 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mattner, L.: Strict definiteness of integrals via complete monotonicity of derivatives. Trans. Am. Math. Soc. 349, 3321–3342 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Molica Bisci, G., Rădulescu, V.D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and Its Applications, vol. 162. Cambridge University Press, Cambridge (2016)

  31. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moroz, V., Van Schaftingen, J.: Existence of ground states for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    Article  MATH  Google Scholar 

  33. Moroz, V., Van Schaftingen, J.: A guide to the Choquard equation. J. Fixed Point Theory Appl. 19, 773–813 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moser, J.: A new proof de Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ozawa, T.: On critical cases of Sobolev’s inequalities. J. Funct. Anal. 127, 259–269 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pekar, S.: Untersuchungüber die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

  37. Qin, D., Rădulescu, V.D., Tang, X.: Ground states and geometrically distinct solutions for periodic Choquard–Pekar equations. J. Differ. Equ. 275, 652–683 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Qin, D., Tang, X.: On the planar Choquard equation with indefinite potential and critical exponential growth. J. Differ. Equ. 285, 40–98 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Qin, D., Tang, X., Zhang, J.: Ground states for planar Hamiltonian elliptic systems with critical exponential growth. J. Differ. Equ. 308, 130–159 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rabinowitz, P.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Su, Y., Wang, L., Chen, H.B., Liu, S.L.: Multiplicity and concentration results for fractional Choquard equations: doubly critical case. Nonlinear Anal. 198, 37 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Takahashi, F.: Critical and subcritical fractional Trudinger+-Moser-type inequalities on \({\mathbb{R} }\). Adv. Nonlinear Anal. 8, 868–884 (2019)

  43. Wei, J., Winter, M.: Strongly interacting bumps for the Schrödinger–Newton equations. J. Math. Phys. 50,(2009)

  44. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser Boston Inc., Boston (1996)

  45. Yang, Z.P., Zhao, F.K.: Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth. Adv. Nonlinear Anal. 10, 732–774 (2021)

  46. Zhang, L.M., Liao, F.F., Tang, X.H., Qin, D.D.: Ground states for singularly perturbed planar Choquard equation with critical exponential growth. J. Nonl. Mod. Anal. https://doi.org/10.12150/jnma.2023.1

  47. Zhang, Y.P., Tang, X.H., Rădulescu, V.D.: Anisotropic Choquard problems with Stein–Weiss potential: nonlinear patterns and stationary waves. C. R. Math. Acad. Sci. Paris 359, 959–968 (2021)

  48. Zhang, W., Yuan, S., Wen, L.: Existence and concentration of ground-states for fractional Choquard equation with indefinite potential. Adv. Nonlinear Anal. 11, 1552–1578 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, W., Zhang, J., Mi, H.: Ground states and multiple solutions for Hamiltonian elliptic system with gradient term. Adv. Nonlinear Anal. 10, 331–352 (2021)

  50. Zhang, W., Zhang, J.: Multiplicity and concentration of positive solutions for fractional unbalanced double phase problems. J. Geom. Anal. 32, 235 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, J., Zhang, W.: Semiclassical states for coupled nonlinear Schrödinger system with competing potentials. J. Geom. Anal. 32, 114 (2022)

    Article  MATH  Google Scholar 

  52. Zhang, J., Zhang, W., Rădulescu, V.D.: Double phase problems with competing potentials: concentration and multiplication of ground states. Math. Z. 301, 4037–4078 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of the first two authors is partially supported by the National Natural Science Foundation of China (No. 11971485) and the Fundamental Research Funds for the Central Universities of Central South University (No. 2021zzts0036). The research of Jian Zhang is supported by Natural Science Foundation of Hunan Province (2021JJ30189, 2022JJ30200), the Key project of Scientific Research Project of Department of Education of Hunan Province (21A0387). This paper has been completed while Shuai Yuan & Jian Zhang were visiting the University of Craiova (Romania) with the financial support of the China Scholarship Council (No. 202106370097, 201908430218). Shuai Yuan and Jian Zhang would like to thank the China Scholarship Council and the Embassy of the People’s Republic of China in Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To supplement the proof of Lemma 17, in this section we collect some preliminary facts. First of all, we denote the upper half-space in \(\mathbb {R}^{2}\) by \(\mathbb {R}_{+}^{2}=\{(x,y)\in \mathbb {R}^{2}:y>0\}\). Define the following:

$$\begin{aligned} \Vert v\Vert ^{\varepsilon }&:=\left( \int _{\mathbb {R}_{+}^{2}}|\nabla v(x,y)|^{2}\mathrm {d}x\mathrm {d}y +\int _{\mathbb {R}}V(\varepsilon x)|v(x,0)|^{2}\mathrm {d}x\right) ^{1/2}. \end{aligned}$$

The space \(X^{1}(\mathbb {R}_{+}^{2})\) is given by the completion of \(C_{0}^{\infty }(\overline{\mathbb {R}_{+}^{2}})\) with the norm \(\Vert \cdot \Vert ^{\varepsilon }\), that is

$$\begin{aligned} X^{1}(\overline{\mathbb {R}_{+}^{2}})&:=\overline{C_{0}^{\infty }(\overline{\mathbb {R}_{+}^{2}})}^{\Vert \cdot \Vert ^{\varepsilon }}. \end{aligned}$$

Moreover, we denote by \(\Vert \cdot \Vert \) the usual norm in \(X^{1}(\mathbb {R}_{+}^{2})\), that is

$$\begin{aligned} \Vert v\Vert =\left( \int _{\mathbb {R}_{+}^{2}}|\nabla v(x,y)|^{2}\mathrm {d}x\mathrm {d}y+\int _{\mathbb {R}}|v(x,0)|^{2}\mathrm {d}x\right) ^{\frac{1}{2}}. \end{aligned}$$

Note that the potential V is bounded from above and below, it is easy to verify that \(\Vert \cdot \Vert ^{\varepsilon }\) and \(\Vert \cdot \Vert \) are equivalent norms in \(X^{1}(\mathbb {R}_{+}^{2})\). Using the above definition, we see that if \(v\in X^{1}(\mathbb {R}_{+}^{2})\), then \(u(x)=v(x,0)\) belongs to \(H^{1/2}(\mathbb {R})\) and

$$\begin{aligned} \Vert v\Vert =\Vert u\Vert _{H^{1/2}}. \end{aligned}$$

Since \(H^{1/2}(\mathbb {R})\) is continuously embedding into \(L^{q}(\mathbb {R})\) for all \(q\ge 2\), c.f. [14, Theorem 6.9], it follows that \(X^{1}(\mathbb {R}_{+}^{2})\) is also continuously embedded into \(L^{q}(\mathbb {R})\) for all \(q\ge 2\). Moreover, the embeddings

$$\begin{aligned} X^{1}(\mathbb {R}_{+}^{2})\hookrightarrow L^{q}(A) \end{aligned}$$

are compact for any bounded measurable set \(A\subset \mathbb {R}\). See [18, Proposition 3.6] also [15, Remark 2.1].

Next, we will give a brief introduction with the technique used in the proof of Lemma 17, using the change of variable \(u(x)=v(\varepsilon x)\), it is easy to know that Problem (4) is equivalent to the problem

$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{1/2}u+V(\varepsilon z)u=[I_{\mu }*F(u)]f(u), &{} \text {in} \ \mathbb {R},\\ u\in H^{1/2}(\mathbb {R}), \quad u>0, &{} \text {on} \ \mathbb {R}. \end{array} \right. \end{aligned}$$
(47)

Hereafter, we will use the method due to Caffarelli and Silvestre in [8] to seek the solution of (47), more exactly, due to Frank and Lenzmann [18] for a whole line. In the seminal above papers, were developed a local interpretation of the fractional Laplacian given in \(\mathbb {R}\) by considering a Dirichlet to Neumann type operator in the domain \(\mathbb {R}_{+}^{2}=\{(x,t)\in \mathbb {R}^{2}:t>0\}\). For \(u\in H^{1/2}(\mathbb {R})\), the solution \(w\in X^{1}(\mathbb {R}_{+}^{2})\) of

$$\begin{aligned} \left\{ \begin{array}{ll} -\text {div}(\nabla w)=0, &{} \text {in} \ \mathbb {R}_{+}^{2},\\ w=u, &{} \text {on} \ \mathbb {R}\times \{0\} \end{array} \right. \end{aligned}$$
(48)

is called \(1/2-\)harmonic extension \(w=E_{1/2}(u)\) of u and it is proved in [8] that

$$\begin{aligned} \lim _{y\rightarrow 0^{+}}\frac{\partial w}{\partial y}(x,y)=-(-\Delta )^{1/2}u(x). \end{aligned}$$

To get a solution for the nonlocal Problem (47), we can study the existence of solutions for the local problem defined on the upper half plane

$$\begin{aligned} \left\{ \begin{array}{ll} -\text {div}(\nabla w)=0, &{} \text {in} \ \mathbb {R}_{+}^{2},\\ -\frac{\partial w}{\partial v}=-V(\varepsilon x)w+[I_{\mu }*F(w)]f(w), &{} \text {on} \ \mathbb {R}\times \{0\}, \end{array} \right. \end{aligned}$$

where

$$\begin{aligned} \frac{\partial w}{\partial v}=\lim _{y\rightarrow 0^{+}}\frac{\partial w}{\partial y}(x,y). \end{aligned}$$

We finally emphasize that u is the solution of (47), if and only if, \(u=v(x,0)\) for all \(x\in \mathbb {R}\), where v is some critical point of the corresponding energy functional of (48).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, S., Tang, X., Zhang, J. et al. Semiclassical States of Fractional Choquard Equations with Exponential Critical Growth. J Geom Anal 32, 290 (2022). https://doi.org/10.1007/s12220-022-01024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01024-9

Keywords

Mathematics Subject Classification

Navigation