Skip to main content
Log in

Uniform Sobolev Inequality along the Sasaki–Ricci Flow

  • Original Research
  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we prove a uniform Sobolev inequality along the Sasaki–Ricci flow. In the process, we develop the theory of basic Lebesgue and Sobolev function spaces, and prove some general results about the decomposition of the heat kernel for a class of elliptic operators on a Sasaki manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer, C.P., Galicki, K.: Sasakian Geometry. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  2. Boyer, C.P., Galicki, K., Simanca, S.R.: Canonical Sasakian metrics. Commun. Math. Phys. 279(3), 705–733 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cao, H.-D.: Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cheeger, J., Tian, G.: On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay. Invent. Math. 118(3), 494–571 (1994)

    MathSciNet  Google Scholar 

  5. Collins, T.: The transverse entropy functional and the Sasaki–Ricci flow. Trans. Am. Math. Soc. (to appear). doi:10.1090/S0002-9947-2012-05601-7

  6. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  7. Folland, G.B.: Real Analysis: Modern Techniques and Their Applications. Wiley, New York (1999)

    MATH  Google Scholar 

  8. Futaki, A., Ono, H., Wang, G.: Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds. J. Differ. Geom. 83(3), 585–636 (2009)

    MATH  MathSciNet  Google Scholar 

  9. Gauntlett, J., Martelli, D., Sparks, J., Waldram, W.: Sasaki–Einstein metrics on S(2)×S(3). Adv. Theor. Math. Phys. 8, 711–734 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gauntlett, J., Martelli, D., Sparks, J., Waldram, W.: A new infinite class of Sasaki–Einstein manifolds. Adv. Theor. Math. Phys. 8, 711–734 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gauntlett, J., Martelli, D., Sparks, J., Yau, S.-T.: Obstructions to the existence of Sasaki–Einstein metrics. Commun. Math. Phys. 273, 803–827 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. He, W.: The Sasaki–Ricci flow and compact Sasakian manifolds of positive transverse holomorphic bisectional curvature. Preprint. arXiv:1103.5807

  13. Hörmander, L.: The spectral functions of an elliptic operator. Acta Math. 121, 193–218 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hsu, S.-Y.: Uniform Sobolev inequalities for manifolds evolving by Ricci flow. Preprint. arXiv:0708.0893

  15. Kamber, F.W., Tondeur, P.: De Rham-Hodge theory for Riemannian foliations. Math. Ann. 277, 415–431 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Martelli, D., Sparks, J.: Toric Sasaki–Einstein metrics on S(2)×S(3). Phys. Lett. B 621, 208–212 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Martelli, D., Sparks, J.: Toric geometry, Sasaki–Einstein manifolds and a new infinite class of AdS/CFT duals. Commun. Math. Phys. 262, 51–89 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Martelli, D., Sparks, J., Yau, S.-T.: Sasaki–Einstein manifolds and volume minimization. Commun. Math. Phys. 280, 611–673 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lovrić, M., Min-Oo, M., Ruh, E.A.: Deforming transverse Riemannian metrics of foliations. Asian J. Math. 4(2), 303–314 (2000)

    MATH  MathSciNet  Google Scholar 

  20. Phong, D., Sturm, J.: Lectures on stability and constant scalar curvature. Curr. Dev. Math. 2007, 101–176 (2009)

    Article  MathSciNet  Google Scholar 

  21. Smoczyk, K., Wang, G., Zhang, Y.: The Sasaki–Ricci Flow. Int. J. Math. 21(7), 951–969 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sparks, J.: Sasaki–Einstein manifolds. Surv. Differ. Geom. 16, 265–324 (2011)

    Article  MathSciNet  Google Scholar 

  23. Ye, R.: The logarithmic Sobolev inequality along the Ricci flow. Preprint. arXiv:0707.2424

  24. Zhang, Q.S.: A uniform Sobolev Inequality under the Ricci flow. Int. Math. Res. Not. 2007, 17 (2007)

    Google Scholar 

  25. Zhang, Q.S.: Erratum to: a uniform Sobolev inequality under the Ricci flow. Int. Math. Res. Not. 2007, 4 (2007)

    Google Scholar 

  26. Zhang, Q.S.: Sobolev Inequalities, heat kernels under Ricci flow and the Poincaré conjecture. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  27. Yau, S.-T.: Open problems in geometry. Proc. Symp. Pure Math. 54, 1–18 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank my advisor Professor D.H. Phong for his guidance and encouragement, as well as for suggesting this problem. I would also like to thank Professors Valentino Tosatti and Gabor Székelyhidi for many helpful suggestions during the writing of this paper. I am also grateful to the referee for pointing out several typos in a previous version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan C. Collins.

Additional information

Communicated by Jiaping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, T.C. Uniform Sobolev Inequality along the Sasaki–Ricci Flow. J Geom Anal 24, 1323–1336 (2014). https://doi.org/10.1007/s12220-012-9374-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-012-9374-5

Keywords

Mathematics Subject Classification

Navigation