Skip to main content
Log in

Sobolev-type inequalities and heat kernel bounds along the geometric flow

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

This paper is concerned with Sobolev-type inequalities and upper bound for the fundamental solution to the heat-type equation defined on compact manifold whose metric evolves by the generalized geometric flow. It turns out that the pointwise estimates obtained in this paper depend on the constants in the uniform Sobolev inequalities for the flow or the best constants in the euclidean Sobolev embedding. We give various illustrations to show that our results are valid in many contexts of geometric flow, where we may not need explicit curvature constraint. Moreover, our approach here also demonstrates equivalence of Sobolev inequalities, log-Sobolev inequalities, ultracontractive estimates and heat kernel upper bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abolarinwa, A.: Gradient estimates for heat-type equations on manifolds evolving by the Ricci flow. Int. J. Pure Appl. Math. 93(3), 463–489 (2014)

    Article  MATH  Google Scholar 

  2. Abolarinwa, A., Lawal, W.: A note on Ricci flow on closed surfaces, \(M^2\), with \(\chi (M^2) {\>}0\). J. Nig. Ass. Math. Phys. 25, 509–520 (2013)

    Google Scholar 

  3. Abolarinwa, A.: Analysis of eigenvalues and conjugate heat kernel under the Ricci flow. PhD Thesis, University of Sussex (2014)

  4. Abolarinwa, A.: Differential Harnack and logarithmic Sobolev inequalities along Ricci-harmonic map flow. Pac. J. Math. (to appear)

  5. Aubin, T.: Problèmes Isopérimétriques et espace de Sobolev. J. Differ. Geom. 14, 573–598 (1976)

    MathSciNet  Google Scholar 

  6. Bǎileşteanu, M.: Bounds on the heat kernel under the Ricci flow. Proc. Am. Math. Soc. 140, 691–700 (2012)

    Article  Google Scholar 

  7. Bǎileşteanu, M., Tran, H.: Heat kernel estimates under the Ricci–Harmonic map flow. arXiv:1310.1619 [math.DG]

  8. Cheeger, J., Yau, S.-T.: A lower bound for the heat kernel. Commun. Pure Appl. Math. 34(4), 465–480 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chow, B., Chu, S., Glickenstein, D., Guenther, C., Idenberd, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications. Part I. Geometric Aspect, pp. 189–284. AMS, Providence (2007)

  10. Chow, B., Knopf, D.: The Ricci Flow: An Introduction. AMS, Providence (2004)

    Book  Google Scholar 

  11. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow: An Introduction. American Mathematics Society, Providence (2006)

  12. Davies, E.B.: Heat Kernel and Spectral theory. Cambridge University Press, Cambridge (1989)

  13. Davies, E.B., Simon, B.: Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59, 3335–3395 (1984)

    Article  MathSciNet  Google Scholar 

  14. Garofalo, N., Lanconelli, E.: Asymptotic behaviour of fundamental solutions and potential theory of parabolic operators with variable coefficients. Math. Ann. 283(2), 211–239 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(1), 1061–1083 (1975)

    Article  Google Scholar 

  16. Gross, L.: Logarithmic Sobolev inequalities and contractivity properties of semigroups. Dirichlet form. Lect. Notes Math. 1563, 54–88 (1993)

    Article  Google Scholar 

  17. Guenther, C.: The fundamental solution on manifolds with time-dependent metrics. J. Geom. Anal. 12, 425–436 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 253–306 (1982)

    Google Scholar 

  19. Hebey, E.: Optimal Sobolev inequalities on complete Riemannian manifolds with Ricci curvature bounded below and positive injectivity radius. Am. J. Math. 118(2), 291–300 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hsu, S.-Y.: Uniform Sobolev inequalities for manifolds evolving by Ricci flow. arXiv:0708.0893

  21. List, B.: Evolution of an extended Ricci flow system. Commun. Anal. Geom. 16(5), 1007–1048 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Müller, R.: Monotone volume formulas for geometric flow. J. Reine Angew. Math. 643, 39–57 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Müller, R.: Ricci flow coupled with harmonic map flow. Ann. Sci. Ec. Norm. Sup. 4(45), 101–142 (2012)

    Google Scholar 

  24. Nelson, E.: The free Markoff field. J. Funct. Anal. 12, 211–227 (1973)

    Article  MATH  Google Scholar 

  25. Perelman, G.: The entropy formula for the Ricci flow and its geometric application. arXiv:math.DG/0211159v1 (2002)

  26. Talenti, G.: Best constant in Sobolev inequality. Ann. Math. Pure Appl. 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ye, R.: The Logarithmic Sobolev Inequalities Along the Ricci Flow. arXiv:0707.2424v4 (2007)

  28. Zhang, Q.S.: Some gradient estimates for the heat equation on domains and for an equation by Perelman. Int. Math. Res. Not. 39 (2006)

  29. Zhang, Q.S.: A uniform Sobolev inequality under Ricci flow. Int. Math. Res. Not. 39, 1–17 (2007)

    MATH  Google Scholar 

  30. Zhang, Q.S.: Sobolev Inequalities, Heat Kernels Under Ricci Flow and the Poincaré Conjecture. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

Download references

Acknowledgments

The author wishes to thank the anonymous referees for their useful comments. He thanks Mihai Bǎileşteanu for the invitation to visit Rochester university, NY, where he got more insight to this study. He also thanks his PhD advisor Dr Ali Taheri for his valuable contribution to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abimbola Abolarinwa.

Additional information

A. Abolarinwa’s research is supported by FGN TETFund AST & D grant through OSCOTECH Nigeria and University of Sussex, UK.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abolarinwa, A. Sobolev-type inequalities and heat kernel bounds along the geometric flow. Afr. Mat. 27, 169–186 (2016). https://doi.org/10.1007/s13370-015-0335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-015-0335-6

Keywords

Mathematics Subject Classification

Navigation