Skip to main content
Log in

Well-posedness of nonlinear flows on manifolds of bounded geometry

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We present straightforward conditions which ensure that a strongly elliptic linear operator L generates an analytic semigroup on Hölder spaces on an arbitrary complete manifold of bounded geometry. This is done by establishing the equivalent property that L is ‘sectorial,’ a condition that specifies the decay of the resolvent \((\lambda I - L)^{-1}\) as \(\lambda \) diverges from the Hölder spectrum of L. A key step is that we prove existence of this resolvent if \(\lambda \) is sufficiently large using a geometric microlocal version of the semiclassical pseudodifferential calculus. The properties of L and \(e^{-tL}\) we obtain can then be used to prove well-posedness of a wide class of nonlinear flows. We illustrate this by proving well-posedness on Hölder spaces of the flow associated with the ambient obstruction tensor on complete manifolds of bounded geometry. This new result for a higher-order flow on a noncompact manifold exhibits the broader applicability of our technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Linear and Quasilinear Parabolic Problems. Monographs in Mathematics, vol. 89. Birkhauser, Basel (1995)

    Book  Google Scholar 

  2. Amann, H.: Nonhomogeneous linear and nonlinear elliptic and parabolic boundary value problems. Funct. spaces Differ. Oper. Nonlinear Anal. Teubner Texte Math. 133, 9–126 (1993)

    Google Scholar 

  3. Andrews, B., Hopper, C.: The Ricci flow in Riemannian geometry: a complete proof of the differentiable 1/4-pinching sphere theorem. In: Lecture Notes in Mathematics, vol. 2011. Springer, Heidelberg (2011)

  4. Bahuaud, E.: Ricci flow of conformally compact metrics. Ann. Inst. H. Poincaré C Anal. Non Linéaire 28(6), 813–835 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bahuaud, E., Helliwell, D.: Short-time existence for some higher-order geometric flows. Commun. PDE 36(12), 2189–2207 (2011)

    Article  MathSciNet  Google Scholar 

  6. Bahuaud, E., Helliwell, D.: Uniqueness for some higher order geometric flows. Bull. Lond. Math. Soc. 47, 980–995 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bahuaud, E., Guenther, C., Isenberg, J.: Convergence stability for Ricci flow. J. Geom. Anal. 30, 310–336 (2020)

    Article  MathSciNet  Google Scholar 

  8. Bahuaud, E., Guenther, C., Isenberg, J., Mazzeo, R.: Convergence stability for Ricci flow on manifolds with bounded geometry. Proc. Am. Math. Soc. to appear

  9. Bartnik, R.: The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 39(5), 661–693 (1986)

    Article  MathSciNet  Google Scholar 

  10. Biquard, O.: Métriques d’Einstein asymptotiquement symétriques, Astérisque No. 265, vi+109 pp (2000)

  11. Biquard, O., Mazzeo, R.: A nonlinear Poisson transform for Einstein metrics on product spaces. J. Eur. Math. Soc. 13, 1423–1475 (2011)

    Article  MathSciNet  Google Scholar 

  12. Chen, G., Chen, X.X.: Gravitational instantons with faster than quadratic curvature decay. I. Acta Math. 227(2), 263–307 (2021)

    Article  MathSciNet  Google Scholar 

  13. Chen, B.L., Zhu, X.P.: Uniqueness of the Ricci flow on complete noncompact manifolds. J. Differential Geom. 74(1), 119–154 (2006)

    Article  MathSciNet  Google Scholar 

  14. Chernoff, P.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12, 401–414 (1973)

    Article  MathSciNet  Google Scholar 

  15. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications Part IV: Long Time Solutions and Related Topics. Mathematical Surveys and Monographs, vol. 209. AMS, Providence (2007)

    Book  Google Scholar 

  16. Chow, B., Lu, P., Nei, L.: Hamilton’s Ricci Flow. Graduate Studies in Mathematics, vol. 77. AMS Science Press, Providence (2007)

    Google Scholar 

  17. Clement, P., Heijmans, H.J.A.M.: One-Parameter Semigroups. CWI Monograph 5, Nort Holland Press, Amsterdam (1987)

    Google Scholar 

  18. Degeratu, A., Mazzeo, R.: Fredholm theory for elliptic operators on quasi-asymptotically conical spaces. Proc. Lond. Math. Soc. 3 116(5), 1112–1160 (2018)

    Article  MathSciNet  Google Scholar 

  19. Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in the Semi-classical Limit. London Mathematical Society Lecture Note Series, vol. 268. Cambridge Univ. Press (1999)

    Book  Google Scholar 

  20. Eichhorn, J.: The boundedness of connection coefficients and their derivatives. Math. Nachr. 152, 145–158 (1991)

    Article  MathSciNet  Google Scholar 

  21. Escher, J., Simonett, G.: A center manifold analysis for the Mullins–Sekerka model. J. Differential Geom. 143, 267–292 (1998)

    Article  MathSciNet  Google Scholar 

  22. Epstein, C.L., Melrose, R.B., Mendoza, G.: Resolvent of the Laplacian on strictly pseudoconvex domains. Acta Math. 167, 1–106 (1991)

    Article  MathSciNet  Google Scholar 

  23. Fefferman, C., Graham, C.R.: The Ambient Metric. Annals of Mathematics Studies, vol. 179. Princeton University Press, Princeton (2012)

    Google Scholar 

  24. Graham, C.R., Jenne, R., Mason, L.J., Sparling, G.A.: Conformally invariant powers of the Laplacian. I. Existence. J. Lond. Math. Soc. 46(3), 557–565 (1992)

    Article  MathSciNet  Google Scholar 

  25. Graham, C.R., Lee, J.M.: Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87, 186–225 (1991)

    Article  MathSciNet  Google Scholar 

  26. Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Inv. Math. 152, 89–118 (2003)

    Article  MathSciNet  Google Scholar 

  27. Guenther, C., Isenberg, J., Knopf, D.: Stability of the Ricci flow at Ricci-flat metrics. Comm. Anal. Geom. 10(4), 741–777 (2002)

    Article  MathSciNet  Google Scholar 

  28. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Corrected reprint of the 1978 Original. Graduate Studies in Mathematics, vol. 34. American Mathematical Society, Providence (2001). (xxvi+641 pp)

    Google Scholar 

  29. Lee, J.M.: Fredholm operators and Einstein metrics on conformally compact manifolds. Memoirs AMS No. 864 (2006)

  30. Knopf, D., Young, A.: Asymptotic stability of the cross curvature flow at a hyperbolic metric. Proc. AMS 137(2), 699–709 (2009)

    Article  MathSciNet  Google Scholar 

  31. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems, 2013 reprint of the 1995 original, Modern Birkhäuser Classics, pp. xviii+424

  32. Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis, Universitext. Springer, Berlin (2002)

    Book  Google Scholar 

  33. Mazzeo, R.: Hodge cohomology of a conformally compact metric. J. Differential Geom. 28, 309–339 (1988)

    Article  MathSciNet  Google Scholar 

  34. Mazzeo, R.: Elliptic theory of differential edge operators, I. Comm. PDE 16(10), 1615–1664 (1991)

    Article  MathSciNet  Google Scholar 

  35. Mazzeo, R., Pacard, F.: Maskit combinations of Poincaré–Einstein metrics. Adv. Math. 204, 379–412 (2006)

    Article  MathSciNet  Google Scholar 

  36. Mazzeo, R.: Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds. Amer. J. Math. 113(1), 25–45 (1991)

    Article  MathSciNet  Google Scholar 

  37. McKean, H.P.: An upper bound to the spectrum of \(\Delta \) on a manifold of negative curvature. J. Differential Geom. 4, 359–366 (1970)

    Article  MathSciNet  Google Scholar 

  38. McOwen, R.: Fredholm theory of partial differential equations on complete Riemannian manifolds. Pac. J. Math. 87(1), 169–185 (1980)

    Article  MathSciNet  Google Scholar 

  39. Melrose, R.: Smooth operator algebras and K-theory. Lectures at UC Berkeley (2008). Available at https://math.mit.edu/~rbm/Bkly08/Bkly08.html

  40. Melrose, R.B., Mendoza, G.: Elliptic operators of totally characteristic type. MSRI Report 047-03 (1983)

  41. Petersen, P.: Riemannian Geometry. Graduate Texts in Mathematics, vol. 171, 3rd edn. Springer, Berlin (2016)

    Book  Google Scholar 

  42. Shubin, M.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin (2001)

    Book  Google Scholar 

  43. Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1980)

    Google Scholar 

  44. Zworski, M.: Semiclassical Analysis Graduate Studies in Mathematics, vol. 138. American Mathematical Society, Providence (2012)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank Jack Lee, Yoshihiko Matsumoto, András Vasy, and Guofang Wei for useful conversations during this work. This work was supported by collaboration grants from the Simons Foundation (#426628, E. Bahuaud and #283083, C. Guenther). J. Isenberg was supported by NSF grant PHY-1707427.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and reviewed the manuscript.

Corresponding author

Correspondence to Christine Guenther.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahuaud, E., Guenther, C., Isenberg, J. et al. Well-posedness of nonlinear flows on manifolds of bounded geometry. Ann Glob Anal Geom 65, 25 (2024). https://doi.org/10.1007/s10455-023-09940-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10455-023-09940-x

Keywords

Mathematics Subject Classification

Navigation