Skip to main content
Log in

A holistic survey on mechatronic Systems in Micro/Nano scale with challenges and applications

  • Research Paper
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

Micro/Nano mechatronic systems might be defined as systems that include nano- or micro-scale components. These components can be sensors, actuators, and/or physical structures. Furthermore, the high-precision control laws for such small scales are important to ensure stability, accuracy, and precision in these systems. In this writing, four categories of such small-scale systems are considered by providing multifarious novel or key examples from the literature: control engineering and modeling, design and fabrication, measurement engineering, and sensor/actuator development. The applications discussed in the examples vary from nano-positioners, crucial in systems such as atomic force microscopes, to biological sensors like carbon nano-tubes that respond to chemical or molecular stimuli. It is observed that in many instances, especially in micro−/nano-robots, the categories overlap for the completion of a system that needs to be small in size, to be controllable with high accuracy, to have high precision sensing capacity, and finally to be able to carry out submillimeter measurements. Thus, a holistic point of view upon such systems is necessary for future applications. This paper does not limit the type of sensors or actuators to the industrial ones and extends the investigated examples to encompass biological sensing and actuating mechanisms that respond to chemical stimuli, proposing for the inclusion of these units in nano−/micro-mechatronic systems intended to be used in human body or other bio-environments. Several other research opportunities are discussed, challenges in the field are identified, and some propositions are put forward for future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Notes

  1. Coronary heart diseases can be effectively prevented, even reversed, with a change in lifestyle, as shown ingeniously by Dr. Esselstyn and others [159, 160]. Thus, the need for advanced treatment methods is not authentic when there are simple ways to prevent and reverse the disease [first author].

References

  1. Fukuda T, Niimi T, Obinata G (2013) Micro-Nano mechatronics - new trends in material, Measurement, Control, Manufacturing and Their Applications in Biomedical Engineering. InTech

  2. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) Nanoscale thermal transport. J Appl Phys 93(2):793–818

    Article  Google Scholar 

  3. Singh H, Myong RS (2018) Critical review of fluid flow physics at micro-to Nano-scale porous media applications in the energy sector. Advan Mat Sci Eng

  4. Wautelet M (2001) Scaling laws in the macro-, micro-and nanoworlds. Eur J Phys 22(6):601–611

    Article  Google Scholar 

  5. Jalili N (2010) Piezoelectric-based vibration control: From Macro to micro/nano scale systems, 1st edn. Springer, New York, NY, p 517

  6. Kenton B, Fleming A, Leang K (2011) Compact ultra-fast vertical nanopositioner for improving scanning probe microscope scan speed. Rev Sci Instrum 82(12):123703

    Article  Google Scholar 

  7. Tuma T, Haeberle W, Rothuizen H, Lygeros J, Pantazi A, Sebastian A (2014) Dual-stage Nanopositioning for high-speed scanning probe microscopy. IEEE/ASME Trans Mechatron 19(3):1035–1045

    Article  Google Scholar 

  8. Shi H, Zhu D (2018) Multi-Axis Nanopositioning system for the hard X-ray Split-delay system at the LCLS. Synchrotron Radiation News 31(5):15–20

    Article  Google Scholar 

  9. Zhu Z, To S, Ehmann KF, Zhou X (2017) Design, analysis, and realization of a novel piezoelectrically actuated rotary spatial vibration system for micro−/nanomachining. IEEE/ASME transactions on mechatronics 22(3):1227–1237

    Article  Google Scholar 

  10. Tang H et al (2015) A flexible parallel nanopositioner for large-stroke micro/nano machining, In: IEEE 2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)

  11. Zhang Y, Zeng A, Huang H, Hou W (2015) Large-area three-dimensional profilometer based on digital micromirror device. J Opt Technol 82(2):102–107

    Article  Google Scholar 

  12. Liu J, Wang Y, Gu K, You X, Zhang M, Li M, Wang W, Tan J (2016) Measuring profile of large hybrid aspherical diffractive infrared elements using confocal profilometer. Measure Sci Tech 27(12):125011

    Article  Google Scholar 

  13. Liu Y (2009) Nanopositioning and Nanomeasuring System: Friction and Its Control, Advan  Tribo,  Springer, Berlin, Heidelberg, pp 592–593

  14. Amthor A, Zschaeck S, Ament C (2010) High precision position control using an adaptive friction compensation approach. IEEE Trans Autom Control 55(1):274–278

    Article  MathSciNet  MATH  Google Scholar 

  15. Gubisch M, Liu Y, Spiess L, Romanus H, Krischok S, Ecke G, Schaefer JA, Knedlik C (2005) Nanoscale multilayer WC/C coatings developed for nanopositioning: part I Microstructures and mechanical properties. Thin Solid Films 488(1):132–139

    Article  Google Scholar 

  16. Liu Y, Gubisch M, Hild W, Scherge M, Spiess L, Knedlik C, Schaefer JA (2005) Nanoscale multilayer WC/C coatings developed for nanopositioning, part II: friction and wear. Thin Solid Films 488(1):140–148

    Article  Google Scholar 

  17. Zhang QS, Chen XB, Yang Q, Zhang WJ (2012) Development and characterization of a novel piezoelectric-driven stick-slip actuator with anisotropic-friction surfaces. Int J Adv Manuf Tech 61(9):1029–1034

    Article  Google Scholar 

  18. Guo Z, Tian Y, Zhang D, Wang T, Wu M (2019) A novel stick-slip based linear actuator using bi-directional motion of micropositioner. Mech Syst Signal Process 128:37–49

    Article  Google Scholar 

  19. Jeon JW, Kim JM (2017) A cylindrical magnetic levitation stage for high-precision rotations. In: 2017 17th International Conference on Control, Automation and Systems (ICCAS), IEEE, pp 545–550

  20. Dong X, Yoon D, Okwudire CE (2017) A novel approach for mitigating the effects of pre-rolling/pre-sliding friction on the settling time of rolling bearing nanopositioning stages using high frequency vibration. Precis Eng 47:375–388

    Article  Google Scholar 

  21. Berger A, Ioslovich I, Gutman PO (2015) Time optimal trajectory planning with feedforward and friction compensation. In 2015 American Control Conference (ACC) (pp. 4143–4148) IEEE, July 2015

  22. Kamenar E, Zelenika S (2017) Nanometric positioning accuracy in the presence of presliding and sliding friction: Modelling, identification and compensation. Mechanics based design of structures and machines 45(1):111–126

    Article  Google Scholar 

  23. Zhang Y, Yan P (2018) An adaptive integral sliding mode control approach for piezoelectric nano-manipulation with optimal transient performance. Mechatronics 52:119–126

    Article  Google Scholar 

  24. Cheng F, Fan KC, Miao J, Li BK, Wang HY (2012) A BPNN-PID based long-stroke nanopositioning control scheme driven by ultrasonic motor. Precis Eng 36(3):485–493

    Article  Google Scholar 

  25. Liu CH, Jywe WY, Jeng YR et al (2010) Design and control of a long-traveling nano-positioning stage. Precis Eng 34:3497–3506

    Article  Google Scholar 

  26. Awtar S, Parmar G (2013) Design of a large range XY nanopositioning system, J Mech Rob, vol 5, no. 2, pp 021008–021008-10

  27. Parmar G (2014) Kira Barton, and S. Awtar, large dynamic range nanopositioning using iterative learning control. Precis Eng 38(1):48–56

    Article  Google Scholar 

  28. Wang J, Zhu C (2017) Dual-drive long-travel precise positioning stage of grating ruling engine. Int J Adv Manuf Technol 93(9–12):3541–3550

    Article  Google Scholar 

  29. Roy NK, Cullinan MA (2018) Design and characterization of a two-axis, flexure-based nanopositioning stage with 50 mm travel and reduced higher order modes. Precis Eng 53:236–247

    Article  Google Scholar 

  30. Ito S, Troppmair S, Lindner B, Cigarini F, Schitter G (2018) Long-range fast nanopositioner using nonlinearities of hybrid reluctance actuator for energy efficiency. IEEE Trans Ind Electron 66(4):3051–3059

    Article  Google Scholar 

  31. Okyay A, Erkorkmaz K, Khamesee MB (2018) Mechatronic design, actuator optimization, and control of a long stroke linear nano-positioner. Precis Eng 52:308–322

    Article  Google Scholar 

  32. Nagel WS, Leangy KK (2017) Design of a dual-stage, three-axis hybrid parallel-serial-kinematic nanopositioner with mechanically mitigated cross-coupling, In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, pp 706–711

  33. Rakotondrabe M, Clévy C, Lutz P (2010) Complete open loop control of hysteretic, creeped, and oscillating piezoelectric cantilevers. IEEE Trans Autom Sci Eng 7(3):440–450

    Article  Google Scholar 

  34. Kuhnen K, Janocha H (2001) Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems. Control Intell Syst 29(3):74–83

    Google Scholar 

  35. Kuhnen K, Janocha H (1999) Adaptive inverse control of piezoelectric actuators with hysteresis operators, Control Conference (ECC), 1999 European. IEEE

  36. Kuhnen K (2003) Modeling, identification and compensation of complex hysteretic nonlinearities: a modified Prandtl-Ishlinskii approach. Eur J Control 9(4):407–418

    Article  MATH  Google Scholar 

  37. Al Janaideh M, Rakheja S, Su C (2011) An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control. IEEE/ASME Trans. Mechatron. 16(4):734–744

    Article  Google Scholar 

  38. Ang W, Khosla PK, Riviere CN (2007) Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12(2):134–142

    Article  Google Scholar 

  39. Rakotondrabe M (2010) Bouc–wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans Autom Sci Eng 8(2):428–431

    Article  Google Scholar 

  40. Fujii F, Tatebatake KI, Morita K, Shiinoki T (2018) September. A Bouc–Wen model-based compensation of the frequency-dependent hysteresis of a piezoelectric actuator exhibiting odd harmonic oscillation. In: Actuators, vol 7, no 3, p 37

  41. Liu Y, Shan J, Gabbert U, Qi N (2013) Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach. Smart Mater Struct 22(11):115020

    Article  Google Scholar 

  42. Liu Y, Shan J, Gabbert U (2014) Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications. Smart Mater Struct 24(1):015012

    Article  Google Scholar 

  43. Lin C, Yang S (2006) Precise positioning of piezo-actuated stages using hysteresis-observer based control. Mechatronics 16(7):417–426

    Article  Google Scholar 

  44. Leang KK, Devasia S (2007) Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators. IEEE Trans Control Syst Technol 15(5):927–935

    Article  Google Scholar 

  45. Zhang D, Zhang C, Wei Q, et al (2008) Modeling piezoelectrically driven micro/nanopositioning systems with high operating frequency.  In: 10th International Conference on Control, Automation, Robotics and Vision, 2008. CARCV 2008. IEEE

  46. Rios SA, Fleming AJ (2015) Design of a charge drive for reducing hysteresis in a piezoelectric bimorph actuator. IEEE/ASME Transactions on Mechatronics 21(1):51–54

    Google Scholar 

  47. Singh T, Singhose W (2002) Input shaping/time delay control of maneuvering flexible structures. In: Proceedings of the American Control Conference, 2002, IEEE, vol 3

  48. Vaughan J, Yano A, Singhose W (2008) Comparison of robust input shapers. J Sound Vib 315(4):797–815

    Article  Google Scholar 

  49. Fleming AJ (2010) Nanopositioning system with force feedback for high-performance tracking and vibration control. IEEE/ASME Trans. Mechatron. 15(3):433–447

    Article  Google Scholar 

  50. Mahmood IA, Moheimani SR (2009) Making a commercial atomic force microscope more accurate and faster using positive position feedback control. Rev Sci Instrum 80(6):63705

  51. Syed HH (2017) Comparative study between positive position feedback and negative derivative feedback for vibration control of a flexible arm featuring piezoelectric actuator. Int J Adv Robot Syst 14(4):17298814–17718801

    Article  Google Scholar 

  52. Aphale SS, Namavar M, Fleming AJ (2018) Resonance-shifting Integral Resonant Control for High-speed Nanopositioning, In: 2018 Annual American Control Conference (ACC), IEEE, pp 6006–6011

  53. Aphale S, Fleming AJ, Moheimani SOR (2007) High speed nano-scale positioning using a piezoelectric tube actuator with active shunt control. Micro & Nano Lett 2(1):9–12

    Article  Google Scholar 

  54. Fleming AJ, Moheimani SOR (2006) Sensorless vibration suppression and scan compensation for piezoelectric tube nanopositioners. IEEE Trans Control Syst Technol 14(1):33–44

    Article  Google Scholar 

  55. Aphale SS, Devasia S, and Moheimani SR (2008) High-bandwidth control of a piezoelectric nanopositioning stage in the presence of plant uncertainties, Nanotechnology 19(12):125503

  56. Russell D, Fleming AJ, Aphale SS (2015) Simultaneous optimization of damping and tracking controller parameters via selective pole placement for enhanced positioning bandwidth of nanopositioners, J Dyn Sys Measure Control 137(10):101004

  57. Wang G, Chen G, Bai F (2016) High-speed and precision control of a piezoelectric positioner with hysteresis, resonance and disturbance compensation. Microsyst Technol 22(10):2499–2509

    Article  Google Scholar 

  58. He W, Yan Z, Sun C, Chen Y (2017) Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer. IEEE transactions on cybernetics 47(10):3452–3465

    Article  Google Scholar 

  59. Al-Mahasneh AJ, Anavatti SG, Garratt MA (2017) Altitude identification and intelligent control of a flapping wing micro aerial vehicle using modified generalized regression neural networks, In 2017 IEEE Symposium Series on Computational Intelligence (SSCI),  IEEE, pp 1–6

  60. Verboom JL, Tijmons S, De Wagter C, Remes B, Babuska R and de Croon GC (2015) May. Attitude and altitude estimation and control on board a flapping wing micro air vehicle, In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp 5846–5851

  61. Mahjoubi H, Byl K (2012) Steering and horizontal motion control in insect-inspired flapping-wing MAVs: the tunable impedance approach. In: 2012 American Control Conference (ACC), IEEE, pp 901–908

  62. Lindholm GJ, Cobb RG (2014) Closed-loop control of a constrained, resonant-flapping micro air vehicle. AIAA J 52(8):1616–1623

    Article  Google Scholar 

  63. Lee JW, Nguyen AT, Han JH (2018) Longitudinal flight control of bioinspired flapping-wing micro air vehicle with extended unsteady vortex-lattice method. In: 31st Congress of the International Council of the Aeronautical Sciences (ICAS 2018). ICAS, September

  64. Chen Z, Um TI, Bart-Smith H (2012) Modeling and control of artificial bladder enabled by ionic polymer-metal composite. In: 2012 American Control Conference (ACC), pp 1925–1930

  65. Srairi F, Saidi L, Djeffal F, Meguellati M (2016) Modeling, control and optimization of a new swimming microrobot design. Engineering Letters 24(1)

  66. Wang B, Zhang Y, Zhang L (2018) Recent progress on micro-and nano-robots: towards in vivo tracking and localization. Quantitative imaging in medicine and surgery 8(5):461–479

    Article  Google Scholar 

  67. Liang Z, Fan D (2018) Visible light–gated reconfigurable rotary actuation of electric nanomotors. Science Advances 4(9):p.eaau0981

  68. Betal S, Saha AK, Ortega E, Dutta M, Ramasubramanian AK, Bhalla AS, Guo R (2018) Core-shell magnetoelectric nanorobot–a remotely controlled probe for targeted cell manipulation. Sci Rep 8(1):1–9

    Article  Google Scholar 

  69. Andhari SS, Wavhale RD, Dhobale KD, Tawade BV, Chate GP, Patil YN, Khandare JJ, Banerjee SS (2020) Self-propelling targeted magneto-nanobots for deep tumor penetration and pH-responsive intracellular drug delivery. Sci Rep 10(1):1–16

    Article  Google Scholar 

  70. Arnon S, Dahan N, Koren A, Radiano O, Ronen M, Yannay T, Giron J, Ben-Ami L, Amir Y, Hel-Or Y and Friedman D (2016) Thought-controlled nanoscale robots in a living host. PloS one 11(8):p.e0161227

  71. Jeon S, Hoshiar AK, Kim K, Lee S, Kim E, Lee S, Kim JY, Nelson BJ, Cha HJ, Yi BJ, Choi H (2019) A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network. Soft robotics 6(1):54–68

    Article  Google Scholar 

  72. Khalesi R, Pishkenari HN, Vossoughi G (2020) Independent control of multiple magnetic microrobots: design, dynamic modelling, and control. Journal of Micro-Bio Robotics 16(2):215–224

    Article  Google Scholar 

  73. Pawashe C, Floyd S, Diller E, Sitti M (2011) Two-dimensional autonomous microparticle manipulation strategies for magnetic microrobots in fluidic environments. IEEE Trans Robot 28(2):467–477

    Article  Google Scholar 

  74. Kim SJ, Jeon SM, Nam JK, Jang GH (2014) Closed-loop control of a self-positioning and rolling magnetic microrobot on 3D thin surfaces using biplane imaging. IEEE Trans Magn 50(11):1–4

    Google Scholar 

  75. Zarrouk A, Belharet K, Tahri O (2020) Vision-based magnetic actuator positioning for wireless control of microrobots. Robot Auton Syst 124:103366

    Article  Google Scholar 

  76. Salehizadeh M, Diller E (2020) Three-dimensional independent control of multiple magnetic microrobots via inter-agent forces. The International Journal of Robotics Research 39(12):1377–1396

    Article  Google Scholar 

  77. Kim JJ, Choi YM, Ahn D, Hwang B, Gweon DG, Jeong J (2012) A millimeter-range flexure-based nano-positioning stage using a self-guided displacement amplification mechanism. Mech Mach Theory 50:109–120

    Article  Google Scholar 

  78. Chu C, Fan S (2006) A novel long-travel piezoelectric-driven linear nanopositioning stage. Precis Eng 30(1):85–95

    Article  Google Scholar 

  79. Lobontiu N, Garcia E (2003) Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms. Comput Struct 81(32):2797–2810

    Article  Google Scholar 

  80. Ninomiya T, Okayama Y, Matsumoto Y, Arouette X, Osawa K, Miki N (2011) MEMS-based hydraulic displacement amplification mechanism with completely encapsulated liquid. Sens. Actuators, A 166(2):277–282

    Article  Google Scholar 

  81. Ma HW, Yao SM, Wang LQ, Zhong Z (2006) Analysis of the displacement amplification ratio of bridge-type flexure hinge. Sens. Actuators, A 132(2):730–736

    Article  Google Scholar 

  82. Choi YM, Gweon DG (2011) A high-precision dual-servo stage using Halbach linear active magnetic bearings. IEEE/ASME Trans. Mechatron. 16(5):925–931

    Article  Google Scholar 

  83. Choi KB, Lee JJ, Hata S (2010) A piezo-driven compliant stage with double mechanical amplification mechanisms arranged in parallel. Sens Actuators, A 161(1):173–181

    Article  Google Scholar 

  84. Pal P, Sato K (2010) Fabrication methods based on wet etching process for the realization of silicon MEMS structures with new shapes. Microsyst Technol 16(7):1165–1174

    Article  Google Scholar 

  85. Essa K, Modica F, Imbaby M, El-Sayed MA, ElShaer A, Jiang K, Hassanin H (2017) Manufacturing of metallic micro-components using hybrid soft lithography and micro-electrical discharge machining. Int J Adv Manuf Technol 91(1–4):445–452

    Article  Google Scholar 

  86. Wang HJ, Zuo DW, Xu F, Lu WZ (2016) Fabrication of nano-crystalline diamond duplex micro-gear by hot filament chemical vapor deposition. Materials transactions, p. M2016334

  87. Kim S, Qiu F, Kim S, Ghanbari A, Moon C, Zhang L, Nelson BJ, Choi H (2013) Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater 25(41):5863–5868

    Article  Google Scholar 

  88. Ceylan H, Yasa IC, Sitti M (2017) 3D chemical patterning of micromaterials for encoded functionality. Adv Mater 29(9):1605072

    Article  Google Scholar 

  89. Reeves JB, Jayne RK, Barrett L, White AE, Bishop DJ (2019) Fabrication of multi-material 3D structures by the integration of direct laser writing and MEMS stencil patterning. Nanoscale 11(7):3261–3267

    Article  Google Scholar 

  90. Xu Q (2015) Design, fabrication, and testing of an MEMS microgripper with dual-axis force sensor. IEEE Sensors J 15(10):6017–6026

    Article  Google Scholar 

  91. Chen M, Yu H, Guo S, Xu R and Shen W (2015) An electromagnetically-driven MEMS micromirror for laser projection. In: 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE, pp 605–607

  92. Moon BU, Tsai SS, Hwang DK (2015) Rotary polymer micromachines: in situ fabrication of microgear components in microchannels. Microfluid Nanofluid 19(1):67–74

    Article  Google Scholar 

  93. Cheah KH, Low KS (2014) Fabrication and performance evaluation of a high temperature co-fired ceramic vaporizing liquid microthruster. J Micromech Microeng 25(1):015013

    Article  Google Scholar 

  94. Hamid NA, Majlis BY, Yunas J, Syafeeza AR, Wong YC, Ibrahim M (2017) A stack bonded thermo-pneumatic micro-pump utilizing polyimide based actuator membrane for biomedical applications. Microsyst Technol 23(9):4037–4043

  95. Sari I, Kraft M (2015) A MEMS linear accelerator for levitated micro-objects. Sensors Actuators A Phys 222:15–23

    Article  Google Scholar 

  96. Yan J et al (2001) Towards flapping wing control for a micromechanical flying insect, Robotics and Automation. In: IEEE International Conference on ICRA, vol 4, IEEE

  97. Bhat SS, Zhao J, Sheridan J, Hourigan K, Thompson MC (2019) Evolutionary shape optimisation enhances the lift coefficient of rotating wing geometries. J Fluid Mech 868:369–384

    Article  MathSciNet  MATH  Google Scholar 

  98. Gong D, Lee D, Shin S, Kim S (2019) String-based flapping mechanism and modularized trailing edge control system for insect-type FWMAV. International Journal of Micro Air Vehicles 11:1756829319842547

    Article  Google Scholar 

  99. Moses KC, Michaels SC, Willis M et al (2017) Artificial Manduca sexta forewings for flapping-wing micro aerial vehicles: how wing structure affects performance, Bioinspiration Biomimetics, vol 12, no 5

  100. Zhang J, Deng X (2017) Resonance principle for the design of flapping wing micro air vehicles. IEEE Trans Robot 33(1):183–197

    Article  Google Scholar 

  101. Van Truong T, Kureemun U, Tan VBC et al (2017) Study on the structural optimization of a flapping wing micro air vehicle. Struct Multidiscip Optim 57(2):1–12

    Google Scholar 

  102. De Wagter C, Tijmons S, Remes BD and de Croon GC (2014) Autonomous flight of a 20-gram flapping wing mav with a 4-gram onboard stereo vision system. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp 4982–4987

  103. Phan HV, Kang T, and Cheol Park H (2017) Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control. Bioinspiration Biomimetics 12(3):036006

  104. Hassanalian M, Abdelkefi A, Wei M, Ziaei-Rad S (2017) A novel methodology for wing sizing of bio-inspired flapping wing micro air vehicles: theory and prototype. Acta Mech 228(3):1097–1113

    Article  Google Scholar 

  105. Bonnet F, Mills R, Szopek M, Schönwetter-Fuchs S, Halloy J, Bogdan S, Correia L, Mondada F, Schmickl T (2019) Robots mediating interactions between animals for interspecies collective behaviors, Science Robotics 4(28):eaau7897, 2019

  106. Nan Y, Karásek M, Lalami ME et al (2017) Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle. Bioinspiration Biomimetics 12(2):026010

  107. Nguyen QV, Chan WL, Debiasi M (2016) Hybrid design and performance tests of a hovering insect-inspired flapping-wing micro aerial vehicle. J Bionic Eng 13(2):235–248

    Article  Google Scholar 

  108. Sivasankaran PN, Ward TA (2016) Spatial network analysis to construct simplified wing structural models for biomimetic micro air vehicles. Aerosp Sci Technol 49:259–268

    Article  Google Scholar 

  109. Graule MA, Chirarattananon P, Fuller SB, Jafferis NT, Ma KY, Spenko M, Kornbluh R, Wood RJ (2016) Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion. Science 352(6288):978–982

    Article  MathSciNet  MATH  Google Scholar 

  110. Whitney JP, Sreethara PS, Ma KY et al (2011) Pop-up book MEMS. J Micromech Microeng 21(11):115021

  111. Lee YJ, Lua KB (2018) Optimization of simple and complex pitching motions for flapping wings in hover. AIAA J 56(6):2466–2470

    Article  Google Scholar 

  112. Ryu S, Kim HJ (2017) Development of a flapping-wing micro air vehicle capable of autonomous hovering with onboard measurements. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp 3239–3245

  113. Chin YW, Ang Z, Luo Y, Chan WL, Chahl JS, Lau GK (2018) Spring-assisted motorized transmission for efficient hover by four flapping wings. Journal of Mechanisms and Robotics 10(6):061014

    Article  Google Scholar 

  114. Hussein AA, Seleit AE, Taha HE, Hajj MR (2019) Optimal transition of flapping wing micro-air vehicles from hovering to forward flight. Aerosp Sci Technol 90:246–263

    Article  Google Scholar 

  115. Lee J, Ryu S, Kim T, Kim W and Kim HJ (2018) Learning-based path tracking control of a flapping-wing micro air vehicle. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp 7096–7102

  116. Fei F, Tu Z, Zhang J, Deng X (2019) Learning extreme hummingbird maneuvers on flapping wing robots, arXiv preprint arXiv:1902.09626

  117. Li X (2018) Battery Lifetime-Aware Flight Control for Flapping Wing Micro Air Vehicles (doctoral dissertation, UC Irvine)

  118. Chin YW (2019) Design and development of energy-efficient mechanism for flapping-wing micro air vehicle (doctoral dissertation)

    Google Scholar 

  119. Ke X, Zhang W, Cai X, Chen W (2017) Wing geometry and kinematic parameters optimization of flapping wing hovering flight for minimum energy. Aerosp Sci Technol 64:192–203

    Article  Google Scholar 

  120. Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120(3):321–326

    Article  Google Scholar 

  121. Loftus TP (2016) To bee or not to bee: Robobees and the issues they present for United States Law and Policy, U. Ill. JL Tech. & Pol'y, p 161

  122. Potts SG, Neumann P, Vaissière B, Vereecken NJ (2018) Robotic bees for crop pollination: why drones cannot replace biodiversity. Sci Total Environ 642:665–667

    Article  Google Scholar 

  123. Fukuda T, Hosokai H, Ohyama H et al (1991) Giant magnetostrictive alloy (GMA) applications to micro mobile robot as a micro actuator without power supply cables. Micro Electro Mechanical Systems, 1991, MEMS'91. In: Proceedings an Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. IEEE

  124. Ebefors T, Mattsson JU, Kälvesten E et al (1999) A walking silicon micro-robot. In Proceeding Transducers 99:1202–1205

  125. Donald BR, Levey CG, McGray CD, Paprotny I, Rus D (2006) An untethered, electrostatic, globally controllable MEMS micro-robot. J Microelectromech Syst 15(1):1–15

    Article  Google Scholar 

  126. Kim B, Lee MG, Lee YP, Kim YI, Lee GH (2006) An earthworm-like micro robot using shape memory alloy actuator. Sens. Actuators, A 125(2):429–437

    Article  Google Scholar 

  127. Pawashe C, Floyd S, Sitti M (2009) Modeling and experimental characterization of an untethered magnetic micro-robot. Int J Robot Res 28(8):1077–1094

    Article  Google Scholar 

  128. Louf JF, Bertin N, Dollet B, Stephan O, Marmottant P (2018) Hovering microswimmers exhibit ultrafast motion to navigate under acoustic forces. Adv Mater Interfaces 5(16):1800425

    Article  Google Scholar 

  129. Ren L, Nama N, McNeill JM, Soto F, Yan Z, Liu W, Wang W, Wang J, Mallouk TE (2019) 3D steerable, acoustically powered microswimmers for single-particle manipulation. Science Advances 5(10):eaax3084

  130. Aghakhani A, Yasa O, Wrede P, Sitti M (2020) Acoustically powered surface-slipping mobile microrobots. Proc Natl Acad Sci 117(7):3469–3477

    Article  Google Scholar 

  131. Yim S, Sitti M (2011) Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Trans Robot 28(1):183–194

    Article  Google Scholar 

  132. Mousa A, Feng L, Dai Y, Tovmachenko O (2018) Self-driving 3-legged crawling prototype capsule robot with orientation controlled by external magnetic field. In: 2018 WRC Symposium on Advanced Robotics and Automation (WRC SARA), IEEE. pp 243–248

  133. Kim SJ, Jang GH, Jeon SM, Nam JK (2015) A crawling and drilling microrobot driven by an external oscillating or precessional magnetic field in tubular environments, Journal of Applied Physics 117(17):17A703

  134. Guo S, Fukuda T, Asaka K (2002) Fish-like underwater microrobot with 3 DOF. Robotics and Automation. In: Proceedings IEEE International Conference on ICRA'02, IEEE. vol 1

  135. Deng X, Avadhanula S, Biomimetic micro underwater vehicle with oscillating fin propulsion: System design and force measurement. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, IEEE

  136. Wang Z, Hang G, Li J, Wang Y, Xiao K (2008) A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin. Sens. Actuators, A 144(2):354–360

    Article  Google Scholar 

  137. Ye Z, Hou P, Chen Z (2017) 2D maneuverable robotic fish propelled by multiple ionic polymer–metal composite artificial fins. Int J Intell Robot Appl 1(2):1–14

    Article  Google Scholar 

  138. Wang Z, Wang Y, Li J et al. (2009) A micro biomimetic manta ray robot fish actuated by SMA. In: 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE

  139. Shi L, Guo S, Mao S et al (2013) Development of a lobster-inspired underwater microrobot. Int J Adv Robot Syst 10(1):44

  140. Guo S, Shi L, Ye X, et al (2007) A new jellyfish type of underwater microrobot. In: International Conference on Mechatronics and Automation ICMA 2007. IEEE

  141. Guo S, Li M, Shi L et al (2012) Development of a novel underwater biomimetic microrobot with two motion attitudes. In: 2012 ICME International Conference on Complex Medical Engineering (CME). IEEE

  142. Zhang W, Guo S, and Asaka K (2005) Developments of two novel types of underwater crawling microrobots. In: IEEE International Conference on Mechatronics and Automation, 2005. vol 4. IEEE, 2005

  143. Guo S, Shi L, Xiao N, Asaka K (2012) A biomimetic underwater microrobot with multifunctional locomotion. Rob Auton Syst 60(12):1472–1483

    Article  Google Scholar 

  144. Guo S, Shi L, Asaka K (2008) IPMC actuator-sensor based a biomimetic underwater microrobot with 8 Legs. In: IEEE International Conference on Automation and Logistics ICAL 2008. IEEE

  145. Cho SK (2014) Mini and micro propulsion for medical swimmers. Micromachines 5(1):97–113

    Article  Google Scholar 

  146. Ishihara K, Furukawa T (1991) Intelligent microrobot DDS (Drug Delivery System) measured and controlled by ultrasonics. In:  Proceedings IROS'91. IEEE/RSJ International Workshop on Intelligent Robots and Systems' 91. Intelligence for Mechanical Systems. IEEE

  147. Freitas RA (2006) Pharmacytes: An ideal vehicle for targeted drug delivery. J Nanosci Nanotechnol 6(9–1):2769–2775

    Article  Google Scholar 

  148. Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85

    Article  Google Scholar 

  149. Dogangil G, Ergeneman O, Abbott JJ et al (2008) IROS 2008. In: International Conference on IEEE/RSJ. IEEE

  150. Peyer KE, Zhang L, Nelson BJ (2013) Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5(4):1259–1272

    Article  Google Scholar 

  151. Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sensors Actuators B Chem 130(2):917–942

    Article  Google Scholar 

  152. Steager EB, Sakar MS, Magee C et al (2013) Automated biomanipulation of single cells using magnetic microrobots. Int J Robot Res 32(3):346–359

  153. Tao W, Zhang M (2005) A genetic algorithm–based area coverage approach for controlled drug delivery using microrobots. Nanomed Nanotechnol Biol Med 1(1):91–100

    Article  Google Scholar 

  154. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070):831–834

    Article  Google Scholar 

  155. Ceylan H, Yasa IC, Yasa O, Tabak AF, Giltinan J, Sitti M (2019) 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 13(3):3353–3362

    Article  Google Scholar 

  156. Yasa IC, Tabak AF, Yasa O, Ceylan H, Sitti M (2019) 3D-printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery. Adv Funct Mater 29(17):1808992

    Article  Google Scholar 

  157. Saxena S, Pramod BJ, Dayananda BC, Nagaraju K (2015) Design, architecture and application of nanorobotics in oncology. Indian J Cancer 52(2):236–241

    Article  Google Scholar 

  158. Cavalcanti A, Shirinzadeh B, Freitas Jr, RA et al (2007) Nanorobot architecture for medical target identification. Nanotechnology 19(1):015103

  159. Esselstyn CB Jr, Gendy G, Doyle J et al (2014) A way to reverse CAD? J Fam Pract 63(7):356–364

    Google Scholar 

  160. Ornish D, Scherwitz LW, Billings JH, Brown SE, Gould KL, Merritt TA, Sparler S, Armstrong WT, Ports TA, Kirkeeide RL, Hogeboom C, Brand RJ (1998) Intensive lifestyle changes for reversal of coronary heart disease. Jama 280(23):2001–2007

    Article  Google Scholar 

  161. Suraj H, Reddy VB (2011) QCA based navigation for nano robot for the treatment of coronary artery disease. In: Proceedings (MeMeA) Medical Measurements and Applications IEEE

  162. Savabi R, Nabaei M, Farajollahi S, Fatouraee N (2020) Fluid structure interaction modeling of aortic arch and carotid bifurcation as the location of baroreceptors. Int J Mech Sci 165:105222

    Article  Google Scholar 

  163. de Ávila, BEF, Angsantikul P, Ramírez-Herrera DE, Soto, F, Teymourian, H, Dehaini, D, Chen Y, Zhang L, Wang J (2018) Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins, Sci Rob 3(18):eaat0485

  164. Huang C, Lv JA, Tian X, Wang Y, Yu Y, Liu J (2015) Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Sci Rep 5:17414

    Article  Google Scholar 

  165. Servant A, Qiu F, Mazza M, Kostarelos K and Nelson BJ (2015) Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv Mat 27(19):2981–2988

  166. Yasa IC, Ceylan H, Bozuyuk U, Wild AM and Sitti M (2020) Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots. Sci Rob, 43

  167. Wu Z, Troll J, Jeong HH, Wei Q, Stang M, Ziemssen F, Wang Z, Dong M, Schnichels S, Qiu T, Fischer P (2018) A swarm of slippery micropropellers penetrates the vitreous body of the eye. Science Advances 4(11):eaat4388

  168. Walker D, Käsdorf  BT, Jeong HH, Lieleg O, Fischer P (2015) Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci Adv 1(11):e1500501

  169. Kehayias P, Turner MJ, Trubko R, Schloss JM, Hart CA, Wesson M, Glenn DR, Walsworth RL (2019) Imaging crystal stress in diamond using ensembles of nitrogen-vacancy centers. Phys Rev B 100(17):174103

    Article  Google Scholar 

  170. Kuo CY, Chan CL, Gau C, Liu CW, Shiau SH, Ting JH (2007) Nano temperature sensor using selective lateral growth of carbon nanotube between electrodes. IEEE Trans Nanotechnol 6(1):63–69

    Article  Google Scholar 

  171. Geiger D, Schrezenmeier I, Roos M, Neckernuss T, Lehn M, Marti O (2017) Measurement of nano particle adhesion by atomic force microscopy using probability theory based analysis. J Phys D Appl Phys 50(20):205301

    Article  Google Scholar 

  172. Kwon S, Kim B, An S, Lee W, Kwak HY, Jhe W (2018) Adhesive force measurement of steady-state water nano-meniscus: effective surface tension at nanoscale. Sci Rep 8(1):8462

    Article  Google Scholar 

  173. Ye J, Sun T, Huang D, Li Z, Lin L (2017) Stand-alone differential capacitance force sensors with sub-nano-newton sensitivity. J Micromech Microeng 27(9):095017

    Article  Google Scholar 

  174. Lay A, Wang DS, Wisser MD, Mehlenbacher RD, Lin Y, Goodman MB, Mao WL, Dionne JA (2017) Upconverting nanoparticles as optical sensors of Nano-to micro-Newton forces. Nano Lett 17(7):4172–4177

    Article  Google Scholar 

  175. Mukhopadhyay A, Granick S (2001) Micro-and nanorheology. Curr Opin Colloid In 6(5):423–429

    Article  Google Scholar 

  176. Garcia L, Barraud C, Picard C et al (2016) A micro-nano-rheometer for the mechanics of soft matter at interfaces. Rev Sci Instrum 87(11):113906

  177. Bown MR, MacInnes JM, Allen RWK et al (2006) Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV. Meas Sci Technol 17(8):2175

  178. Li RJ, Fan KC, Huang QX, Zhou H, Gong EM, Xiang M (2016) A long-stroke 3D contact scanning probe for micro/nano coordinate measuring machine. Precis Eng 43:220–229

    Article  Google Scholar 

  179. Fan KC, Fei YT, Yu XF et al (2006) Development of a low-cost micro-CMM for 3D micro/nano measurements. Meas Sci Technol 17(3):524

  180. Krishnamoorthy U, Olsson Iii RH, Bogart GR et al (2008) In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sens. Actuators, A 145:283–290

    Article  Google Scholar 

  181. Laine J, Mougenot D (2014) A high-sensitivity MEMS-based accelerometer. Lead Edge 33(11):1234–1242

    Article  Google Scholar 

  182. Zou X, Thiruvenkatanathan P, Seshia AA (2014) A seismic-grade resonant MEMS accelerometer. J Microelectromech Syst 23(4):768–770

    Article  Google Scholar 

  183. Sonmezoglu S, Alper SE, Akin T (2014) An automatically mode-matched MEMS gyroscope with wide and tunable bandwidth. J Microelectromech Syst 23(2):284–297

    Article  Google Scholar 

  184. Cao H, Li H, Kou Z, Shi Y, Tang J, Ma Z, Shen C, Liu J (2016) Optimization and experimentation of dual-mass MEMS gyroscope quadrature error correction methods. Sensors 16(1):71

    Article  Google Scholar 

  185. Chen WC, Gao GW, Wang J, Liu L, Li XL (2012) The study of the MEMS gyro zero drift signal based on the adaptive Kalman filter. In: Key Engineering Materials, vol 500. Trans Tech Publications, pp 635–639

  186. Prikhodko IP, Trusov AA, Shkel AM (2013) Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing. Sensors Actuators A Phys 201:517–524

    Article  Google Scholar 

  187. Fuller SB, Helbling EF, Chirarattananon P and Wood RJ (2014) Using a MEMS gyroscope to stabilize the attitude of a fly-sized hovering robot. In: International Micro Air Vehicle Conference and Competition (IMAV), Delft University of Technology, Delft, the Netherlands, Aug. 12–15, pp 102–109

  188. Tian J, Yang W, Peng Z, Tang T, Li Z (2016) Application of MEMS accelerometers and gyroscopes in fast steering mirror control systems. Sensors 16(4):440

    Article  Google Scholar 

  189. Wang Y, Wang L, Yang T, Li X, Zang X, Zhu M, Wang K, Wu D, Zhu H (2014) Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Funct Mater 24(29):4666–4670

    Article  Google Scholar 

  190. Hu G, Zhou R, Yu R, Dong L, Pan C, Wang ZL (2014) Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors. Nano Res 7(7):1083–1091

    Article  Google Scholar 

  191. Setter JR, Hesketh PJ, Hunter GW (2006) Sensors: engineering structures and materials from micro to nano. Interface 15(1):66–69

    Google Scholar 

  192. Jiang G, Goledzinowski M, Comeau FJ, Zarrin H, Lui G, Lenos J, Veileux A, Liu G, Zhang J, Hemmati S, Qiao J (2016) Free-standing functionalized Graphene oxide solid electrolytes in electrochemical gas sensors. Adv Funct Mater 26(11):1729–1736

    Article  Google Scholar 

  193. Wang X, Ji S, Wang H, Yan D (2011) Room temperature nitrogen dioxide chemresistor using ultrathin vanadyl-phthalocyanine film as active layer. Sensors and Actuators B: Chemical 160(1):115–120m

  194. Waggoner PS, Craighead HG (2007) Micro-and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 7(10):1238–1255

    Article  Google Scholar 

  195. Minh Triet N, Thai Duy L, Hwang BU, Hanif A, Siddiqui S, Park KH, Cho CY, Lee NE (2017) High-performance Schottky diode gas sensor based on the Heterojunction of three-dimensional Nanohybrids of reduced Graphene oxide–vertical ZnO Nanorods on an AlGaN/GaN layer. ACS Appl Mater Interfaces 9(36):30722–30732

    Article  Google Scholar 

  196. Xue L, Wang W, Guo Y, Liu G, Wan P (2017) Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors. Sensors Actuators B Chem 244:47–53

    Article  Google Scholar 

  197. Fan H, Cheng Y, Gu C, Zhou K (2016) A novel gas sensor of formaldehyde and ammonia based on cross sensitivity of cataluminescence on nano-Ti3SnLa2O11. Sensors Actuators B Chem 223:921–926

    Article  Google Scholar 

  198. Nikfarjam A, Hosseini S, Salehifar N (2017) Fabrication of a highly sensitive single aligned TiO2 and gold nanoparticle embedded TiO2 nano-fiber gas sensor. ACS Appl Mater Interfaces 9(18):15662–15671

    Article  Google Scholar 

  199. Alshammari AS, Alenezi MR, Lai KT, Silva SRP (2017) Inkjet printing of polymer functionalized CNT gas sensor with enhanced sensing properties. Mater Lett 189:299–302

    Article  Google Scholar 

  200. Bing L, Qing-Hao M, Jia-Ying W, Biao S and Ying W (2015) Three-dimensional gas distribution mapping with a micro-drone. In: 2015 34th Chinese Control Conference (CCC), IEEE, pp 6011–6015

  201. Castro A, Magnezi N, Sintayehu B, Quinto A, Abshire P (2018) Odor source localization on a Nano Quadcopter. In: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp 1–4

  202. Yao W, Wei XC, and Zhang J (2010) A capacitive humidity sensor based on gold–PVA core–shell nanocomposites. Sens. Actuators B 145(1):327–333

  203. Kashi MA, Ramazani A, Abbasian H et al (2012) Capacitive humidity sensors based on large diameter porous alumina prepared by high current anodization. Sens. Actuators, A 174:69–74

    Article  Google Scholar 

  204. Rittersma ZM, Splinter A, Bödecker A, Benecke W (2000) A novel surface-micromachined capacitive porous silicon humidity sensor. Sensors Actuators B Chem 68(1):210–217

    Article  Google Scholar 

  205. Rubinger CPL, Martins CR, De Paoli MA et al (2007) Sulfonated polystyrene polymer humidity sensor: synthesis and characterization. Sensors Actuators B Chem 123(1):42–49

    Article  Google Scholar 

  206. Kim DU, Gong MS (2005) Thick films of copper-titanate resistive humidity sensor. Sensors Actuators B Chem 110(2):321–326

    Article  Google Scholar 

  207. Cho NB, Lim TH, Jeon YM, Gong MS (2008) Inkjet printing of polymeric resistance humidity sensor using UV-curable electrolyte inks. Macromol Res 16(2):149–154

    Article  Google Scholar 

  208. Nohria R, Khillan RK, Su Y, Dikshit R, Lvov Y, Varahramyan K (2006) Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly. Sensors Actuators B Chem 114(1):218–222

    Article  Google Scholar 

  209. Gerlach G, Sager K (1994) A piezoresistive humidity sensor. Sens. Actuators, A 43(1–3):181–184

    Article  Google Scholar 

  210. Plassmeyer PN, Mitchson G, Woods KN, Johnson DC, Page CJ (2017) Impact of relative humidity during spin-deposition of metal oxide thin films from aqueous solution precursors. Chem Mater 29(7):2921–2926

    Article  Google Scholar 

  211. Lei X, Rui W, Qi X et al (2011) Micro humidity sensor with high sensitivity and quick response/recovery based on ZnO/TiO2 composite nanofibers. Chinese Physics Letters 28(7):070702

  212. Shin B, Ha J, Lee M, Park K, Park GH, Choi TH, Cho KJ, Kim HY (2018) Hygrobot: a self-locomotive ratcheted actuator powered by environmental humidity. Science Robotics 3(14):2629

    Article  Google Scholar 

  213. Jing W, Chowdhury S and Cappelleri D (2017) Magnetic mobile microrobots for mechanobiology and automated biomanipulation. In: Microbiorobotics. Elsevier, pp 197–219

  214. Go G, Yoo A, Song HW, Min HK, Zheng S (2020) Nguyen. K.T, Kim, S., Kang, B., Hong, A., Kim, C.S. and Park, J.O., Multifunctional Biodegradable Microrobot with Programmable Morphology for Biomedical Applications. ACS nano

  215. Kim DI, Lee H, Kwon SH, Choi H, Park S (2019) Magnetic nano-particles retrievable biodegradable hydrogel microrobot. Sensors Actuators B Chem 289:65–77

    Article  Google Scholar 

  216. Tamanaha CR, Mulvaney SP, Rife JC, Whitman LJ (2008) Magnetic labeling, detection, and system integration. Biosens Bioelectron 24(1):1–13

    Article  Google Scholar 

  217. Fritzsche W, Andrew Taton T (2003) Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology 14(12):R63

  218. Xiao Y, Lubin AA, Heeger AJ, Plaxco KW (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem 117(34):5592–5595

    Article  Google Scholar 

  219. Baker BR, Lai RY, Wood MCS, Doctor EH, Heeger AJ, Plaxco KW (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. JACS 128(10):3138–3139

    Article  Google Scholar 

  220. Zayats M, Huang Y, Gill R, Ma CA, Willner I (2006) Label-free and reagentless aptamer-based sensors for small molecules. JACS 128(42):13666–13667

    Article  Google Scholar 

  221. Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors, TrAC. Trends Anal Chem 27(2):108–117

  222. Zou Y, Xiang C, Sun LX, Xu F (2008) Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO 2 sol–gel. Biosens Bioelectron 23(7):1010–1016

    Article  Google Scholar 

  223. Zhang GJ, Chua JH, Chee RE, Agarwal A, Wong SM (2009) Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens Bioelectron 24(8):2504–2508

    Article  Google Scholar 

  224. Bunimovich YL, Shin YS, Yeo WS, Amori M, Kwong G, Heath JR (2006) Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. JACS 128(50):16323–16331

    Article  Google Scholar 

  225. Barone PW, Baik S, Heller DA, Strano MS (2005) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4(1):86–92

    Article  Google Scholar 

  226. Jeng ES, Moll AE, Roy AC, Gastala JB, Strano MS (2006) Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. Nano Lett 6(3):371–375

    Article  Google Scholar 

  227. Heller DA, Jeng ES, Yeung TK, Martinez BM, Moll AE, Gastala JB, Strano MS (2006) Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311(5760):508–511

    Article  Google Scholar 

  228. Ahuja T, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sensors Actuators B Chem 136(1):275–286

    Article  Google Scholar 

  229. Yoon H, Jang J (2009) Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges. Adv Funct Mater 19(10):1567–1576

    Article  Google Scholar 

  230. Aravinda CL, Cosnier S, Chen W, Myung NV, Mulchandani A (2009) Label-free detection of cupric ions and histidine-tagged proteins using single poly (pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor. Biosens Bioelectron 24(5):1451–1455

    Article  Google Scholar 

  231. Bangar MA, Shirale DJ, Chen W, Myung NV, Mulchandani A (2009) Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker. Anal Chem 81(6):2168–2175

    Article  Google Scholar 

  232. Yoon H, Jang J (2009) Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges. Adv Funct Mater 19(10):1567–1576

    Article  Google Scholar 

  233. Huang Z, Tsui GCP, Deng Y, Tang CY (2020) Two-photon polymerization nanolithography technology for fabrication of stimulus-responsive micro/nano-structures for biomedical applications. Nanotechnol Rev 9(1):1118–1136

    Article  Google Scholar 

  234. Tung HW, Maffioli M, Frutiger DR, Sivaraman KM, Pané S, Nelson BJ (2013) Polymer-based wireless resonant magnetic microrobots. IEEE Trans Robot 30(1):26–32

    Article  Google Scholar 

  235. Petrini L, Migliavacca F, Biomedical applications of shape memory alloys (2011). J Met Metall, vol 2011

  236. Seelecke S, Muller I (2004) Shape memory alloy actuators in smart structures: modeling and simulation. Appl Mech Rev 57(1):23–46

    Article  Google Scholar 

  237. Bogdanski D, Köller M, Müller D, Muhr G, Bram M, Buchkremer HP, Stöver D, Choi J, Epple M (2002) Easy assessment of the biocompatibility of Ni–Ti alloys by in vitro cell culture experiments on a functionally graded Ni–NiTi–Ti material. Biomaterials 23(23):4549–4555

    Article  Google Scholar 

  238. Chu CL, Chung CY, Lin PH, Wang SD (2004) Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis. Mater Sci Eng A 366(1):114–119

    Article  Google Scholar 

  239. Jani JM, Leary M, Subic A et al (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113

    Article  Google Scholar 

  240. Zakharov D, Lebedev G, Irzhak A et al (2012) Submicron-sized actuators based on enhanced shape memory composite material fabricated by FIB-CVD. Smart Mater Struct 21(5):052001

  241. Caizzone S, Occhiuzzi C, Marrocco G (2011) Multi-chip RFID antenna integrating shape-memory alloys for detection of thermal thresholds. IEEE Trans Antennas Propag 59(7):2488–2494

    Article  Google Scholar 

  242. Xu D, Wang L, Ding G, Zhou Y, Yu A, Cai B (2001) Characteristics and fabrication of NiTi/Si diaphragm micropump. Sens. Actuators, A 93(1):87–92

    Article  Google Scholar 

  243. Kim DH, Lee MG, Kim B et al (2005) A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: a numerical and experimental study. Smart Mater. Struct 14(6):1265

  244. Chang-Jun Q, Pei-Sun M, Qin Y (2004) A prototype micro-wheeled-robot using SMA actuator. Sens. Actuators, A 113(1):94–99

    Article  Google Scholar 

  245. Kalimullina E, Kamantsev A, Koledov V et al (2014) Magnetic shape memory microactuators. Micromachines 5(4):1135–1160

    Article  Google Scholar 

  246. Ambrosino C, Capoluongo P, Davino D et al (2007) Fiber bragg grating and magnetic shape memory alloy: novel high-sensitivity magnetic sensor. IEEE Sensors J 7(2):228–229

    Article  Google Scholar 

  247. Gueltig M, Ossmer H, Ohtsuka M et al (2015) Thermomagnetic actuation by low hysteresis metamagnetic Ni-co-Mn-in films. Materials Today: Proceedings 2:S883–S886

    Google Scholar 

  248. Gueltig M, Ossmer H, Ohtsuka M et al (2014) High frequency thermal energy harvesting using magnetic shape memory films. Adv Energy Mater 4(17)

  249. Riccardi L, Naso D, Janocha H, Turchiano B (2012) A precise positioning actuator based on feedback-controlled magnetic shape memory alloys. Mechatronics 22(5):568–576

    Article  Google Scholar 

  250. Huang HW, Sakar MS, Petruska AJ, Pané S, Nelson BJ (2016) Soft micromachines with programmable motility and morphology. Nat Commun 7(1):1–10

    Article  Google Scholar 

  251. Lee YW, Ceylan H, Yasa IC, Kilic U, Sitti M (2020) 3D-printed multi-stimuli-responsive Mobile micromachines. ACS Appl Mater Interfaces

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NJ, AGD; Formal analysis and investigation AGD; Writing—original draft preparation AGD; Writing—review and editing: NJ, AGD, MTA; Supervision: NJ, MTA.

Corresponding author

Correspondence to Nader Jalili.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbarzadeh-Dagheyan, A., Jalili, N. & Ahmadian, M.T. A holistic survey on mechatronic Systems in Micro/Nano scale with challenges and applications. J Micro-Bio Robot 17, 1–22 (2021). https://doi.org/10.1007/s12213-021-00145-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-021-00145-8

Keywords

Navigation