Skip to main content

Advertisement

Log in

2D maneuverable robotic fish propelled by multiple ionic polymer–metal composite artificial fins

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

An Erratum to this article was published on 14 August 2017

This article has been updated

Abstract

Bio-inspired robotic fish are proving to be promising underwater vehicles whose high propulsion efficiency, stealth, and compact size make them suitable for remote sensing missions in intelligence collection, environmental monitoring, and fishing agriculture. In this research, a two-dimensional (2D), maneuverable, bio-inspired robotic fish propelled by multiple ionic polymer-metal composite artificial fins was developed. The movement of this fish, equipped with one caudal fin and two pectoral fins, was then modeled by a nonlinear dynamic model for design and control purposes. Experiments were conducted to verify the model’s capabilities of characterizing the robotic fish’s 2D movement. The forward-swimming speed reached about 12 mm/s and the turning speed reached about 2.5 deg/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Change history

  • 14 August 2017

    An erratum to this article has been published.

References

  • Aureli, M., Kopman, V., Porfiri, M.: Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans. Mechatron. 15, 603–614 (2010)

    Article  Google Scholar 

  • Barbera, G.: Analisi teorica e sperimentale di un sistema di controllo per un veicolo biomimetico boxfish. Universita Degli Studi Di Padova, Padua (2009)

    Google Scholar 

  • Bar-Cohen, Y.: Electroactive polymers as artificial muscles-capabilities, potentials and challenges. Handb. Biomim. 8, 188–196 (2000)

    Google Scholar 

  • Bartolini, T., Mwaffo, V., Showler, A., Macrì, S., Butail, S., Porfiri, M.: Zebrafish response to 3D printed shoals of conspecifics: the effect of body size. Bioinspir. Biomim. 11, 026003 (2016)

    Article  Google Scholar 

  • Behbahani, S.B., Wang, J., Tan, X.: A dynamic model for robotic fish with flexible pectoral fins. IEEE/ASME Int. Conf. Adv. Intell. Mechatron. 2013, 1552–1557 (2013)

    Google Scholar 

  • Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R.E., Sommer-Larsen, P.: Dielectric elastomers as electromechanical transducers: fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier, Amsterdam (2011)

    Google Scholar 

  • Chen, Z., Tan, X.: A control-oriented and physics-based model for ionic polymer–metal composite actuators. IEEE/ASME Trans. Mechatron. 13, 519–529 (2008)

    Article  Google Scholar 

  • Chen, Z., Hedgepeth, D.R., Tan, X.: A nonlinear, control-oriented model for ionic polymer–metal composite actuators. Smart Mater. Struct. 18, 055008 (2009)

    Article  Google Scholar 

  • Chen, Z., Shatara, S., Tan, X.: Modeling of biomimetic robotic fish propelled by an ionic polymer–metal composite caudal fin. IEEE/ASME Trans. Mechatron. 15, 448–459 (2010)

    Article  Google Scholar 

  • Chen, Z., Um, T.I., Bart-Smith, H.: A novel fabrication of ionic polymer–metal composite membrane actuator capable of 3-dimensional kinematic motions. Sens. Actuators 168, 131–139 (2011a)

    Article  Google Scholar 

  • Chen, Z., Um, T.I., Zhu, J., Bart-Smith, H.: Bio-inspired robotic cownose ray propelled by electroactive polymer pectoral fin. ASME 2011 Int. Mech. Eng. Congr. Expo. 26, 817–824 (2011b)

    Article  Google Scholar 

  • Chen, Z., Um, T.I., Bart-Smith, H.: Bio-inspired robotic manta ray powered by ionic polymer–metal composite artificial muscles. Int. J. Smart Nano Mater. 3, 296–308 (2012)

    Article  Google Scholar 

  • Evologics: Subsea glider with fin ray effect. https://www.evologics.de/en/products/glider/index.html (2009). Accessed 1 Feb 2017

  • Festo: Aqua ray inspired by the manta ray. https://www.festo.com/group/en/cms/10246.htm (2008). Accessed 1 Feb 2017

  • Gao, J., Bi, S., Xu, Y., Liu, C.: Development and design of a robotic manta ray featuring flexible pectoral fins. IEEE Int. Conf. Robot. Biomim. ROBIO 2007, 519–523 (2007)

    Google Scholar 

  • Guo, J.: A waypoint-tracking controller for a biomimetic autonomous underwater vehicle. Ocean Eng. 33, 2369–2380 (2006)

    Article  Google Scholar 

  • Guo, S., Fukuda, T., Asaka, K.: A new type of fish-like underwater microrobot. IEEE/ASME Trans. Mechatron. 8, 136–141 (2003)

    Article  Google Scholar 

  • Hu, W.-R.: Hydrodynamic study on a pectoral fin rowing model of a fish. J. Hydrodyn. Ser. B 21, 463–472 (2009)

    Article  Google Scholar 

  • Hu, H., Liu, J., Dukes, I., Francis, G.: Design of 3D swim patterns for autonomous robotic fish. IEEE/RSJ Int. Conf. Intell. Robots Syst. 2006, 2406–2411 (2006)

    Google Scholar 

  • Kim, B., Kim, D.-H., Jung, J., Park, J.-O.: A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators. Smart Mater. Struct. 14, 1579 (2005)

    Article  Google Scholar 

  • Kodati, P., Hinkle, J., Deng, X.: Micro autonomous robotic ostraciiform (MARCO): design and fabrication. IEEE Int. Conf. Robot. Autom. 2007, 960–965 (2007)

    Google Scholar 

  • Kopman, V., Laut, J., Acquaviva, F., Rizzo, A., Porfiri, M.: Dynamic modeling of a robotic fish propelled by a compliant tail. IEEE J. Ocean. Eng. 40, 209–221 (2015)

    Article  Google Scholar 

  • Lauder, G.V., Anderson, E.J., Tangorra, J., Madden, P.G.: Fish biorobotics: kinematics and hydrodynamics of self-propulsion. J. Exp. Biol. 210, 2767–2780 (2007)

    Article  Google Scholar 

  • Lauder, G., Madden, P., Tangorra, J., Anderson, E., Baker, T.: Bioinspiration from fish for smart material design and function. Smart Mater. Struct. 20, 094014 (2011)

    Article  Google Scholar 

  • Lighthill, M.: Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 44, 265–301 (1970)

    Article  MATH  Google Scholar 

  • Morgansen, K.A., Triplett, B.I., Klein, D.J.: Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles. IEEE Trans. Robot. 23, 1184–1199 (2007)

    Article  Google Scholar 

  • Mwaffo, V., Butail, S., Porfiri, M.: In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions. Sci. Rep. 7, 39877 (2017)

    Article  Google Scholar 

  • Najem, J., Sarles, S.A., Akle, B., Leo, D.J.: Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators. Smart Mater. Struct. 21, 094026 (2012)

    Article  Google Scholar 

  • Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287, 836–839 (2000)

    Article  Google Scholar 

  • Punning, A., Anton, M., Kruusmaa, M., Aabloo, A.: A biologically inspired ray-like underwater robot with electroactive polymer pectoral fins. Int. IEEE Conf. Mechatron. Robot. 2004, 241–245 (2004)

    Google Scholar 

  • Ruberto, T., Mwaffo, V., Singh, S., Neri, D., Porfiri, M.: Zebrafish response to a robotic replica in three dimensions. R. Soc. Open Sci. 3, 160505 (2016)

    Article  Google Scholar 

  • Ryuh, Y.-S., Yang, G.-H., Liu, J., Hu, H.: A school of robotic fish for mariculture monitoring in the sea coast. J. Bionic Eng. 12, 37–46 (2015)

    Article  Google Scholar 

  • Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites: I. Fundamentals. Smart Mater. Struct. 10, 819 (2001)

    Article  Google Scholar 

  • Shao, J., Wang, L., Yu, J.: Development of an artificial fish-like robot and its application in cooperative transportation. Contr. Eng. Pract. 16, 569–584 (2008)

    Article  Google Scholar 

  • Suo, Z.: Theory of dielectric elastomers. Acta Mech. Solida Sin. 23, 549–578 (2010)

    Article  Google Scholar 

  • Tan, X., Kim, D., Usher, N., Laboy, D., Jackson, J., Kapetanovic, A., et al.: An autonomous robotic fish for mobile sensing. IEEE/RSJ Int. Conf. Intell. Robots Syst. 2006, 5424–5429 (2006)

    Google Scholar 

  • Villanueva, A., Smith, C., Priya, S.: A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir. Biomim. 6, 036004 (2011)

    Article  Google Scholar 

  • Walker, J.A.: Dynamics of pectoral fin rowing in a fish with an extreme rowing stroke: the threespine stickleback (Gasterosteus aculeatus). J. Exp. Biol. 207, 1925–1939 (2004)

    Article  Google Scholar 

  • Wang, J., McKinley, P. K., Tan, X.: Dynamic modeling of robotic fish with a flexible caudal fin. In: Proceeding ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference, pp. 203–212 (2012)

  • Wang, J., Tan, X.: A dynamic model for tail-actuated robotic fish with drag coefficient adaptation. Mechatronics 23, 659–668 (2013)

    Article  Google Scholar 

  • Wang, Y., Tan, R., Xing, G., Wang, J., Tan, X., Liu, X., et al.: Aquatic debris monitoring using smartphone-based robotic sensors. In: Proceedings of the 13th international symposium on Information processing in sensor networks. pp. 13–24 (2014)

  • Wang, Z., Wang, Y., Li, J., Hang, G.: A micro biomimetic manta ray robot fish actuated by SMA. IEEE Int. Conf. Robot. Biomim 2009, 1809–1813 (2009)

    Google Scholar 

  • Wang, J., McKinley, P.K., Tan, X.: Dynamic modeling of robotic fish with a base-actuated flexible tail. J. Dyn. Syst. Meas. Contr. 137, 011004 (2015)

    Article  Google Scholar 

  • y Alvarado, P.V., Youcef-Toumi, K.: Design of machines with compliant bodies for biomimetic locomotion in liquid environments. J. Dyn. Syst. Meas. Control 128, 3–13 (2006)

    Article  Google Scholar 

  • Ye, X., Su, Y., Guo, S.: A centimeter-scale autonomous robotic fish actuated by IPMC actuator. IEEE Int. Conf. Robot. Biomim. 2007, 262–267 (2007)

    Google Scholar 

  • Yeom, S.-W., Oh, I.-K.: A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater. Struct. 18, 085002 (2009)

    Article  Google Scholar 

  • Yu, J., Tan, M., Wang, S., Chen, E.: Development of a biomimetic robotic fish and its control algorithm. IEEE Trans. Syst. Man Cybern. 34, 1798–1810 (2004)

    Article  Google Scholar 

  • Zhou, C., Low, K.: Design and locomotion control of a biomimetic underwater vehicle with fin propulsion. IEEE/ASME Trans. Mechatron. 17, 25–35 (2012)

    Article  Google Scholar 

  • Zienkiewicz, A., Barton, D., Porfiri, M., Di Bernardo, M.: Leadership emergence in a data-driven model of zebrafish shoals with speed modulation. Eur. Phys. J. Spec. Top. 224, 3343–3360 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Science Foundation under grant CNS #1446557 and Wichita State University under the University Research/Creative Projects Award (URCA).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Zheng Chen.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s41315-017-0032-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Hou, P., Chen, Z. et al. 2D maneuverable robotic fish propelled by multiple ionic polymer–metal composite artificial fins. Int J Intell Robot Appl 1, 195–208 (2017). https://doi.org/10.1007/s41315-017-0019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-017-0019-5

Keywords

Navigation