Skip to main content
Log in

Fabrication methods based on wet etching process for the realization of silicon MEMS structures with new shapes

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, fabrication methods are developed in order to realize the silicon microelectromechanical systems components with new shapes in {100} Si wafers. Fabrication process utilizes wet etching with a single step of photolithography. The silicon etching is carried out in complementary metal oxide semiconductor process compatible pure and surfactant Triton-X-100 [C14H22O(C2H4O] n , n = 9–10) added tetramethylammonium hydroxide (TMAH) solutions. The fabricated structures are divided in two categories: fixed and freestanding. The fixed structures are realized in single oxidized silicon wafers, while freestanding are formed in silicon nitride-based silicon on insulator (SOI) wafers. The SOI wafers are prepared by bonding the oxidized and the nitride deposited wafers, followed by thinning and chemical mechanical polishing processes. The etching results such as {100} and {110}Si etch rates, undercutting at rounded concave and sharp convex corners and etched surface morphologies are measured in both pure and Triton added TMAH solutions. Different concentrations of TMAH are used to optimize the etching conditions for desired etched profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abedinov N, Grabiec P, Gotszalk T, Ivanov T, Voigt J, Rangelow IW (2001) Micromachined piezoresistive cantilever array with integrated resistive microheater for calorimetry and mass detection. J Vac Sci Technol A 19:2884–2888. doi:10.1116/1.1412654

    Article  Google Scholar 

  • Bhardwaj J, Ashraf H, McQuarrie A (1997) Dry silicon etching for MEMS, proceedings of the 191st meeting Electrochemical Society. In: Proceeding of microstructures and microfabricated systems III symposium, Montreal, pp 118–130

  • Conway EM, Cunnane VJ (2002) Electrochemical characterization of Si in tetra-methyl ammonium hydroxide (TMAH) and TMAH:Triton-X-100 solutions under white light effects. J Micromech Microeng 12:136–148. doi:10.1088/0960-1317/12/2/307

    Article  Google Scholar 

  • Ismail MS, Bower RW, Veteran JL, Marsh OJ (1990) Silicon nitride direct bonding. Electron Lett 26:1045–1046. doi:10.1049/el:19900677

    Article  Google Scholar 

  • Jeon JS, Raghavan S, Carrejo JP (1996) Effect of temperature on the interaction of silicon with nonionic surfactants in alkaline solutions. J Electrochem Soc 143:277–283

    Article  Google Scholar 

  • Merlos A, Acero MC, Bao MH, Bausells J, Esteve J (1992) A study of the undercutting characteristics in the TMAH:IPA system. J Micromech Microeng 2:181–183. doi:10.1088/0960-1317/2/3/014

    Article  Google Scholar 

  • Pal P, Sato K (2009a) Silicon microfluidic channels and microstructures in single photolithography step. In: Proceeding of symposium on design, test, integration and packaging of MEMS and MOEMS (DTIP-2009). Rome, Italy, pp 415–419

  • Pal P, Sato K (2009b) Suspended Si microstructures over controlled depth micromachined cavities for MEMS based sensing devices. Sens Lett 7:11–16. doi:10.1166/sl.2009.1003

    Article  Google Scholar 

  • Pal P, Kim YJ, Chandra S (2006) Front-to-back alignment techniques in microelectronics/MEMS fabrication: a review. Sens Lett 4:1–10. doi:10.1166/sl.2006.007

    Article  Google Scholar 

  • Pal P, Sato K, Chandra S (2007a) Fabrication techniques of convex corners in a (100)-silicon wafer using bulk micromachining: a review. J Micromech Microeng 17:R111–R133. doi:10.1088/0960-1317/17/10/R01

    Article  Google Scholar 

  • Pal P, Sato K, Gosalvez MA, Shikida M (2007b) Study of rounded concave and sharp edge convex corners undercutting in CMOS compatible anisotropic etchants. J Micromech Microeng 17:2299–2307. doi:10.1088/0960-1317/17/11/017

    Article  Google Scholar 

  • Pal P, Sato K, Shikida M, Gosalvez MA (2009) Study of corner compensating structures and fabrication of various shapes of MEMS structures in pure and surfactant added TMAH. Sens Actuators A 154:192–203. doi:10.1016/j.sna.2008.09.002

    Article  Google Scholar 

  • Resnik D, Vrtacnik D, Aljancic U, Mozek M, Amon S (2005) The role of Triton surfactant in anisotropic etching of 110 reflective planes on (100) silicon. J Micromech Microeng 15:1174–1183. doi:10.1088/0960-1317/15/6/007

    Article  Google Scholar 

  • Sanchez S, Gui C, Elwenspoek M (1997) Spontaneous direct bonding of thick silicon nitride. J Micromech Microeng 7:111–113. doi:10.1088/0960-1317/7/3/007

    Article  Google Scholar 

  • Sarro PM, Brida D, Vander Vlist W, Brida S (2000) Effect of surfactant on surface quality of silicon microstructures etched in saturated TMAHW solutions. Sens Actuators A 85:340–345. doi:10.1016/S0924-4247(00)00317-4

    Article  Google Scholar 

  • Sekimura M (1999) Anisotropic etching of surfactant-added TMAH solution. In: Proceedings of the. 12th IEEE Micro-Electro-Mech System conference, Orlando, Florida, pp 17–21

  • Sundaram KB, Vijayakumar A, Subramanian G (2005) Smooth etching of silicon using TMAH and isopropyl alcohol for MEMS applications. Microelectron Eng 77:230–241. doi:10.1016/j.mee.2004.11.004

    Article  Google Scholar 

  • Tong QY, Gosele U (1999) Semiconductor wafer bonding: science and technology. Wiley, New York

    Google Scholar 

  • Wiegand M, Reiche M, Gosele U, Gutjahr K, Stolze D, Longwitz R, Hiller E (2000) Wafer bonding of silicon wafers covered with various surface layers. Sens Actuators A 86:91–95. doi:10.1016/S0924-4247(00)00420-9

    Article  Google Scholar 

  • Wu Q, Lee M, Liu CC (1993) Development of chemical sensors using microfabrication and micromachining techniques. Sens Actuators B 13/14:1–6. doi:10.1016/0925-4005(93)85310-7

    Article  Google Scholar 

  • Yang CR, Yang CH, Chen PY (2005) Study on anisotropic silicon etching characteristics in various surfactant-added tetramethyl ammonium hydroxide water solutions. J Micromech Microeng 15:2028–2037. doi:10.1088/0960-1317/15/11/006

    Article  Google Scholar 

  • Zubel I, Kramkowska M (2001) The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions. Sens Actuators A 93:138–147. doi:10.1016/S0924-4247(01)00648-3

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Japan Society of the Promotion of Science (JSPS) through a foreign postdoctoral research fellowship scheme (2008–2010, fellowship ID No. 08053), and grant-in-aid for scientific research (A) 19201026, 70008053 from MEXT. We are grateful to Prof. Norikazu Suzuki for providing the chemical mechanical polishing (CMP) facility and for suggestions about how to use it successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, P., Sato, K. Fabrication methods based on wet etching process for the realization of silicon MEMS structures with new shapes. Microsyst Technol 16, 1165–1174 (2010). https://doi.org/10.1007/s00542-009-0956-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-009-0956-5

Keywords

Navigation