Skip to main content
Log in

Recent Advances in Pure-Organic Host–Guest Room-Temperature Phosphorescence Systems Toward Bioimaging

  • Review
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Organic room-temperature phosphorescence (RTP) materials have garnered considerable attention in the fields of biosensing, optoelectronic devices, and anticounterfeiting because of their substantial Stokes shifts, tunable emission wavelengths, and prolonged lifetimes. These materials offer remarkable advantages for biological imaging applications by effectively reducing environmental autofluorescence and enhancing imaging resolution. Recently, host–guest systems have been employed as efficient approaches to fabricate pure-organic RTP materials for bioimaging, providing benefits such as controllable preparation and flexible modulation. Consequently, an increasing number of corresponding studies are being reported; however, a comprehensive systematic review is still lacking. Therefore, we summarize recent advances in the development of pure-organic RTP materials using host–guest systems with regard to bioimaging, including rigid matrices and sensitization. The challenge and potential of RTP for biological imaging are also proposed to promote the biomedical applications of organic RTP materials with excellent optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [47]. Copyright 2018 American Chemical Society. b Guest molecules for the complexation with CDs. c Emission spectra of MTC and PTC in the presence of various CDs. d Images of the tetravalent anionic compounds with 1 equiv. ratio of various CDs under UV light irradiation (λex = 365 nm). Reproduced with permission from Ref. [48]. Copyright 2022 Wiley–VCH

Fig. 3

Reproduced with permission from Ref. [50]. Copyright 2020 Wiley–VCH. c Absorption and emission spectra of assembly BH-PY. Insets: images of BH-PY and BH-PY/CB[8] in an aqueous solution at 298 K under UV light (305 nm). d Scheme of the supramolecular assembly with CB[8]. Reproduced with permission from Ref. [51]. Copyright 2022 Springer. e Molecular structure of guests (G1–G3) and hosts (CB[n]). Reproduced with permission from Ref. [52]. Copyright 2022 Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref. [53]. Copyright 2022 Wiley–VCH. c Scheme and molecular structures of the photo-controlled NIR phosphorescence of DTE-TP/CB[8]; d Changes in the emission and absorption of DTE-TP following the addition of CB[8] (2 equiv. ratio). Reproduced with permission from Ref. [54]. Copyright 2022 Wiley–VCH

Fig. 5

Reproduced with permission from Ref. [55]. Copyright 2021 Wiley–VCH

Fig. 6

Reproduced with permission from Ref. [56]. Copyright 2023 American Association for the Advancement of Science

Fig. 7

Reproduced with permission from Ref. [57]. Copyright 2022 Chinese Chemical Society. b Molecular structures of host and guest molecules and F127-derived NPs for biological imaging. Reproduced with permission from Ref. [58]. Copyright 2023 Wiley–VCH

Fig. 8

Reproduced with permission from Ref. [59]. Copyright 2022 Springer Nature

Fig. 9

Reproduced with permission from Ref. [8]. Copyright © 2021 American Chemical Society

Fig. 10

Reproduced with permission from Ref. [64]. Copyright 2020 Wiley–VCH. b Scheme of the assembly of polysaccharide supramolecular RTP-harvesting system with NIR emission in water and related molecular structures. Reproduced with permission from Ref. [65]. Copyright 2022 Wiley–VCH. c Schematic of a photodimerization-enhanced secondary purely organic RTP capture system. Reproduced with permission from Ref. [66]. Copyright 2023 Wiley–VCH

Similar content being viewed by others

References

  1. Gu F, Ma XA (2021) Stimuli-responsive polymers with room-temperature phosphorescence. Chem A Eur J 28(15):e202104131

    Article  Google Scholar 

  2. Song JM, Ma LW, Sun SY et al (2022) Reversible multilevel stimuli-responsiveness and multicolor room-temperature phosphorescence emission based on a single-component system. Angew Chem Int Ed 61(29):e202206157

    Article  Google Scholar 

  3. Lin XH, Xu C, Qiu YY et al (2023) Emission-tunable room-temperature phosphorescent two-dimensional polymer network via a photo-cross-linking reaction. Ind Eng Chem Res 62(33):13053–13060

    Article  Google Scholar 

  4. Wu Z, Nitsch J, Marder TB (2021) Persistent room-temperature phosphorescence from purely organic molecules and multi-component systems. Adv Opt Mater 9(20):2100411

    Article  Google Scholar 

  5. Liu JC, Zhang HY, Wang N et al (2019) Template-modulated afterglow of carbon dots in zeolites: room-temperature phosphorescence and thermally activated delayed fluorescence. ACS Mater Lett 1(1):58–63

    Article  Google Scholar 

  6. Ji MX, Ma X (2023) Recent progress of organic room-temperature phosphorescent materials towards application. Ind Chem Mater 1:582–594

    Article  Google Scholar 

  7. Yang J, Zhen X, Wang B et al (2018) The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat Commun 9(1):840

    Article  Google Scholar 

  8. Zhou YD, Lu S, Zhi JH et al (2021) Microscopic afterglow bioimaging by ultralong organic phosphorescent nanoparticles in living cells and zebrafish. Anal Chem 93(16):6516–6522

    Article  Google Scholar 

  9. Zhao WJ, Cheung TS, Jiang N et al (2019) Boosting the efficiency of organic persistent room-temperature phosphorescence by intramolecular triplet-triplet energy transfer. Nat Commun 10(1):1595

    Article  Google Scholar 

  10. Wang X, Shi HF, Ma HL et al (2021) Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat Photonics 15(3):187–192

    Article  Google Scholar 

  11. Gu L, Shi HF, Bian LF et al (2019) Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. Nat Photonics 13(6):406–411

    Article  Google Scholar 

  12. Li H, Li HH, Wang W et al (2020) Stimuli-responsive circularly polarized organic ultralong room temperature phosphorescence. Angew Chem Int Ed Engl 59(12):4756–4762

    Article  Google Scholar 

  13. Liang YC, Shang Y, Liu KK et al (2020) Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks. Nano Res 13(3):875–881

    Article  Google Scholar 

  14. Mellerup SK, Wang SN (2019) Boron-based stimuli responsive materials. Chem Soc Rev 48(13):3537–3549

    Article  Google Scholar 

  15. Zhou YS, Qin W, Du C et al (2019) Long-lived room-temperature phosphorescence for visual and quantitative detection of oxygen. Angew Chem Int Ed 58(35):12102–12106

    Article  Google Scholar 

  16. Xu YZ, Xu RH, Wang Z et al (2021) Recent advances in luminescent materials for super-resolution imaging via stimulated emission depletion nanoscopy. Chem Soc Rev 50(1):667–690

    Article  Google Scholar 

  17. Jiang YY, Huang JG, Zhen X et al (2019) A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat Commun 10(1):2064

    Article  Google Scholar 

  18. Huang QQ, Gao HQ, Yang SM et al (2020) Ultrastable and colorful afterglow from organic luminophores in amorphous nanocomposites: advanced anti-counterfeiting and in vivo imaging application. Nano Res 13(4):1035–1043

    Article  Google Scholar 

  19. Liao QY, Gao QH, Wang JQ et al (2020) 9, 9-dimethylxanthene derivatives with room-temperature phosphorescence: substituent effects and emissive properties. Angew Chem Int Ed Engl 59(25):9946–9951

    Article  Google Scholar 

  20. Gao R, Mei X, Yan DP et al (2018) Nano-photosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nat Commun 9(1):2798

    Article  Google Scholar 

  21. Xu YW, Xu P, Hu DH et al (2021) Recent progress in hot exciton materials for organic light-emitting diodes. Chem Soc Rev 50(2):1030–1069

    Article  Google Scholar 

  22. Zhan G, Liu ZW, Bian ZQ et al (2019) Recent advances in organic light-emitting diodes based on pure organic room temperature phosphorescence materials. Front Chem 7:305

    Article  Google Scholar 

  23. Sun H, Zhu LL (2022) Achieving purely organic room temperature phosphorescence in aqueous solution. Aggregate 4(1):e253

    Article  Google Scholar 

  24. Ma LW, Liu YW, Tian H et al (2023) Switching singlet exciton to triplet for efficient pure organic room-temperature phosphorescence by rational molecular design. JACS Au 3(7):1835–1842

    Article  Google Scholar 

  25. Sasikumar D, John AT, Sunny J et al (2020) Access to the triplet excited states of organic chromophores. Chem Soc Rev 49(17):6122–6140

    Article  Google Scholar 

  26. Hirata S (2018) Ultralong-lived room temperature triplet excitons: molecular persistent room temperature phosphorescence and nonlinear optical characteristics with continuous irradiation. J Mater Chem C 6(44):11785–11794

    Article  Google Scholar 

  27. Yan ZA, Ma XA (2022) External heavy-atom activated phosphorescence of organic luminophores in a rigid fluid matrix. ACS Mater Lett 4(12):2555–2561

    Article  Google Scholar 

  28. Bolton O, Lee K, Kim HJ et al (2011) Activating efficient phosphorescence from purely organic materials by crystal design. Nat Chem 3(3):205–210

    Article  Google Scholar 

  29. Cai SZ, Shi HF, Tian D et al (2018) Enhancing ultralong organic phosphorescence by effective π-type halogen bonding. Adv Funct Mater 28(9):1705045

    Article  Google Scholar 

  30. Yuan J, Wang YR, Li L et al (2020) Activating intersystem crossing and aggregation coupling by CN-substitution for efficient organic ultralong room temperature phosphorescence. J Phys Chem C 124:10129–10134

    Article  Google Scholar 

  31. He ZK, Zhao WJ, Lam JWY et al (2017) White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat Commun 8(1):416

    Article  Google Scholar 

  32. Yuan WZ, Shen XY, Zhao H et al (2010) Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J Phys Chem C 114(13):6090–6099

    Article  Google Scholar 

  33. Li WL, Huang QY, Mao Z et al (2019) Selective expression of chromophores in a single molecule: soft organic crystals exhibiting full-colour tunability and dynamic triplet-exciton behaviours. Angew Chem Int Ed 59(9):3739–3745

    Article  Google Scholar 

  34. Yan X, Peng H, Xiang Y et al (2022) Recent advances on host-guest material systems toward organic room temperature phosphorescence. Small 18(1):e2104073

    Article  Google Scholar 

  35. Wang Z, Zhu CY, Wei ZW et al (2020) Breathing-ignited long persistent luminescence in a resilient metal–organic framework. Chem Mater 32(2):841–848

    Article  Google Scholar 

  36. Gao J, Zhao YY, You XX et al (2022) Theoretical search of a simple characteristic for long-lived organic room-temperature phosphorescence materials with H aggregation. J Mater Chem C 10(14):5425–5432

    Article  Google Scholar 

  37. Shi HF, Yao W, Ye WP et al (2022) Ultralong organic phosphorescence: from material design to applications. Acc Chem Res 55(23):3445–3459

    Article  Google Scholar 

  38. Ma XA, Wang JE, Tian H (2019) Assembling-induced emission: an efficient approach for amorphous metal-free organic emitting materials with room-temperature phosphorescence. Acc Chem Res 52(3):738–748

    Article  Google Scholar 

  39. Qu DH, Wang QC, Zhang QW et al (2015) Photoresponsive host–guest functional systems. Chem Rev 115(15):7543–7588

    Article  Google Scholar 

  40. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89(26):7017–7036

    Article  Google Scholar 

  41. Zhang QW, Yao XY, Qu DH et al (2014) Multistate self-assembled micro-morphology transitions controlled by host–guest interactions. Chem Commun 50(13):1567–1569

    Article  Google Scholar 

  42. Ma XA, Tian H (2014) Stimuli-responsive supramolecular polymers in aqueous solution. Acc Chem Res 47(7):1971–1981

    Article  Google Scholar 

  43. Wankar J, Kotla NG, Gera S et al (2020) Recent advances in host–guest self-assembled cyclodextrin carriers: implications for responsive drug delivery and biomedical engineering. Adv Funct Mater 30(44):1909049

    Article  Google Scholar 

  44. Crini G, Fourmentin S, Fenyvesi É et al (2018) Cyclodextrins, from molecules to applications. Environ Chem Lett 16(4):1361–1375

    Article  Google Scholar 

  45. Li D, Liu ZJ, Fang MM et al (2023) Ultralong room-temperature phosphorescence with second-level lifetime in water based on cyclodextrin supramolecular assembly. ACS Nano 17(13):12895–12902

    Article  Google Scholar 

  46. Turro NJ, Bolt JD, Kuroda Y et al (1982) A study of the kinetics of inclusion of halonaphthalenes with β-cyclodextrin via time correlated phosphorescence. Photochem Photobiol 35(1):69–72

    Article  Google Scholar 

  47. Li DF, Lu FF, Wang JE et al (2018) Amorphous metal-free room-temperature phosphorescent small molecules with multicolor photoluminescence via a host–guest and dual-emission strategy. J Am Chem Soc 140(5):1916–1923

    Article  Google Scholar 

  48. Hayduk M, Schaller T, Niemeyer FC et al (2022) Phosphorescence induction by host-guest complexation with cyclodextrins–the role of regioisomerism and affinity. Chem A Eur J 28(51):e202201081

    Article  Google Scholar 

  49. Gong YF, Chen H, Ma XA et al (2015) A cucurbit[7]uril based molecular shuttle encoded by visible room-temperature phosphorescence. ChemPhysChem 17(12):1934–1938

    Article  Google Scholar 

  50. Wang J, Huang ZZ, Ma X et al (2020) Visible-light-excited room-temperature phosphorescence in water by cucurbit[8]uril-mediated supramolecular assembly. Angew Chem Int Ed Engl 59(25):9928–9933

    Article  Google Scholar 

  51. Chen YH, Yang JS, Zhang S et al (2022) Construction of a room-temperature phosphorescence system by cucurbit[8]uril-based supramolecular assembly. J Incl Phenom Macrocycl Chem 102(5):429–437

    Article  Google Scholar 

  52. Xu TY, Liu FB, Hu XC et al (2022) Cucurbit[n]uril-based host-guest interaction enhancing organic room-temperature phosphorescence of phthalic anhydride derivatives in aqueous solution. New J Chem 46(23):11025–11029

    Article  Google Scholar 

  53. Ma XK, Zhou XL, Wu J et al (2022) Two-photon excited near-infrared phosphorescence based on secondary supramolecular confinement. Adv Sci 9(18):e2201182

    Article  Google Scholar 

  54. Wang CH, Liu YH, Liu Y (2022) Near-infrared phosphorescent switch of diarylethene phenylpyridinium derivative and cucurbit[8]uril for cell imaging. Small 18(21):e2201821

    Article  Google Scholar 

  55. Wang YS, Gao HQ, Yang JE et al (2021) High performance of simple organic phosphorescence host–guest materials and their application in time-resolved bioimaging. Adv Mater 33(18):2007811

    Article  Google Scholar 

  56. Chang K, Xiao LY, Fan YY et al (2023) Lighting up metastasis process before formation of secondary tumor by phosphorescence imaging. Sci Adv 9(20):eadf6757

    Article  Google Scholar 

  57. Dai WB, Zhang YH, Wu XH et al (2022) Red-emissive organic room-temperature phosphorescence material for time-resolved luminescence bioimaging. CCS Chem 4(8):2550–2559

    Article  Google Scholar 

  58. Si YY, Zhao YY, Dai WB et al (2023) Organic host-guest materials with bright red room-temperature phosphorescence for persistent bioimaging. Chin J Chem 41(13):1575–1582

    Article  Google Scholar 

  59. Xiao FM, Gao HQ, Lei YX et al (2022) Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging. Nat Commun 13(1):186

    Article  Google Scholar 

  60. Ding BB, Ma XA, Tian H (2023) Recent advances of pure organic room temperature phosphorescence based on functional polymers. Acc Mater Res 4(10):827–838

    Article  Google Scholar 

  61. Cai SZ, Shi HF, Li JW et al (2017) Visible-light-excited ultralong organic phosphorescence by manipulating intermolecular interactions. Adv Mater 29(35):1701244

    Article  Google Scholar 

  62. Shi HF, Zou LA, Huang KW et al (2019) A highly efficient red metal-free organic phosphor for time-resolved luminescence imaging and photodynamic therapy. ACS Appl Mater Interfaces 11(20):18103–18110

    Article  Google Scholar 

  63. Wang X, Sun WJ, Shi HF et al (2022) Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy. Nat Commun 13(1):5091

    Article  Google Scholar 

  64. Dang QX, Jiang YY, Wang JF et al (2020) Room-temperature phosphorescence resonance energy transfer for construction of near-infrared afterglow imaging agents. Adv Mater 32(52):2006752

    Article  Google Scholar 

  65. Xing WW, Wang HJ, Liu ZX et al (2023) Photoreaction boosting phosphorescence cascade energy transfer based on cucurbit[8]uril biaxial polypseudorotaxane. Adv Opt Mater 11(7):2202588

    Article  Google Scholar 

  66. Dai XY, Huo M, Dong XY et al (2022) Noncovalent polymerization-activated ultrastrong near-infrared room-temperature phosphorescence energy transfer assembly in aqueous solution. Adv Mater 34(38):e2203534

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 22125803, 22020102006 and 22307036), a project supported by the Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX03), the Program of Shanghai Academic/Technology Research Leader (No. 20XD1421300), China Postdoctoral Science Foundation (No. 2023M731079), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Ma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Li, Y. & Ma, X. Recent Advances in Pure-Organic Host–Guest Room-Temperature Phosphorescence Systems Toward Bioimaging. Trans. Tianjin Univ. 29, 432–443 (2023). https://doi.org/10.1007/s12209-023-00375-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-023-00375-w

Keywords

Navigation