Skip to main content
Log in

Construction of a room-temperature phosphorescence system by cucurbit[8]uril-based supramolecular assembly

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A bromophenylpyridine derivative (BH-PY) was designed and synthesized as the guest molecule included in the cavity of cucurbit[8]uril (CB[8]) to form a 2:1 host–guest complex, which displays good room-temperature phosphorescence (RTP) in aqueous solutions. The interaction and optical properties of CB[8] with a guest in aqueous solution were investigated using 1H NMR spectroscopy, UV–Vis absorbance spectra, fluorescence and phosphorescence spectra and X-ray diffraction analysis in detail. The result showed that the bromophenyl moieties of the two guest molecules are included in the cavity of the CB[8] in a ‘head-to-tail’ stacking way, whereas the other part of BH-PY remains outside the portal to form a 2:1 supramolecular structurce, and supramolecular assemblies were applied for targeted phosphorescent imaging of mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Lu, C., Su, Q., Yang, X.: Ultra-long room-temperature phosphorescent carbon dots: pH sensing and dual-channel detection of tetracyclines. Nanoscale. 11, 16036–16042 (2019). https://doi.org/10.1039/C9NR03989A

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, Y., Qin, W., Du, C., Gao, H., Zhu, F., Liang, G.: Long-lived room-temperature phosphorescence for visual and quantitative detection of oxygen. Angew. Chem. Int. Edit. 58, 12102–12106 (2019). https://doi.org/10.1002/ange.201906312

    Article  CAS  Google Scholar 

  3. Gao, H., Gao, Z., Jiao, D., Zhang, J., Li, X., Tang, Q., Shi, Y., Ding, D.: Boosting room temperature phosphorescence performance by alkyl modification for intravital orthotopic lung tumor imaging. Small (2021). https://doi.org/10.1002/smll.202005449

    Article  PubMed  Google Scholar 

  4. Gao, R., Mei, X., Yan, D., Liang, R., Wei, M.: Nano-photosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nat. Commun. 9, 2798 (2018). https://doi.org/10.1038/s41467-018-05223-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kimura, K., Miwa, K., Imada, H., Imai-Imada, M., Kawahara, S., Takeya, J., Kawai, M., Galperin, M., Kim, Y.: Selective triplet exciton formation in a single molecule. Nature. 570, 210–213 (2019). https://doi.org/10.1038/s41586-019-1284-2

    Article  CAS  PubMed  Google Scholar 

  6. Lee, D.R., Han, S.H., Lee, J.Y.: Metal-free and purely organic phosphorescent light-emitting diodes using phosphorescence harvesting hosts and organic phosphorescent emitters. J. Mater. Chem. C. 7, 11500–11506 (2019). https://doi.org/10.1039/c9tc03203g

    Article  CAS  Google Scholar 

  7. Sicard, L.J., Li, H.-C., Wang, Q., Liu, X.-Y., Jeannin, O., Rault-Berthelot, J., Liao, L.-S., Jiang, Z.-Q., Poriel, C.: C1-linked spirobifluorene dimers: pure hydrocarbon hosts for high-performance blue phosphorescent OLEDs. Angew. Chem. Int. Edit. 58, 3848–3853 (2019). https://doi.org/10.1002/ange.201813604

    Article  CAS  Google Scholar 

  8. Deng, Y., Li, P., Sun, S., Jiang, H., Ji, X., Li, H.: Proton-activated amorphous room-temperature phosphorescence for humidity sensing and high-level data encryption. Chem. Asian J. 15, 1088–1093 (2020). https://doi.org/10.1002/asia.201901747

    Article  CAS  PubMed  Google Scholar 

  9. Gu, L., Wu, H., Ma, H., Ye, W., Jia, W., Wang, H., Chen, H., Zhang, N., Wang, D., Qian, C., An, Z., Huang, W., Zhao, Y.: Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer. Nat. Commun. 11(2020), 944 (2020). https://doi.org/10.1038/s41467-020-14792-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qi, H., Zhang, H., Wu, X., Tang, Y., Qian, M., Wang, K., Qi, H.: Matrix-free and highly efficient room-temperature phosphorescence carbon dots towards information encryption and decryption. Chem. Asian J. 15, 1281–1284 (2020). https://doi.org/10.1002/asia.202000063

    Article  CAS  PubMed  Google Scholar 

  11. Li, D., Lu, F., Wang, J., Hu, W., Cao, X.-M., Ma, X., Tian, H.: Amorphous metal-free room-temperature phosphorescent small molecules with multicolor photoluminescence via a host-guest and dual-emission strategy. J. Am. Chem. Soc. 140, 1916–1923 (2018). https://doi.org/10.1021/jacs.7b12800

    Article  CAS  PubMed  Google Scholar 

  12. Ma, X., Xu, C., Wang, J., Tian, H.: Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission. Angew. Chem. Int. Edit. 57, 10854–10858 (2018). https://doi.org/10.1002/anie.201808425

    Article  CAS  Google Scholar 

  13. Tao, S., Lu, S., Geng, Y., Zhu, S., Redfern, S.A.T., Song, Y., Feng, T., Xu, W., Yang, B.: Design of metal-free polymer carbon dots: a new class of room-temperature phosphorescent materials. Angew. Chem. Int. Edit. 57, 2393–2398 (2018). https://doi.org/10.17863/CAM.21572

    Article  CAS  Google Scholar 

  14. Gong, Y., Chen, G., Peng, Q., Yuan, W.Z., Xie, Y., Li, S., Zhang, Y., Tang, B.Z.: Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens. Adv. Mater. 27, 6195–6201 (2015). https://doi.org/10.1002/adma.201502442

    Article  CAS  PubMed  Google Scholar 

  15. He, Z., Zhao, W., Lam, J.W.Y., Peng, Q., Ma, H., Liang, G., Shuai, Z., Tang, B.Z.: White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat. Commun. 8, 416 (2017). https://doi.org/10.1038/s41467-017-00362-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kwon, M.S., Lee, D., Seo, S., Jung, J., Kim, J.: Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew. Chem. Int. Edit. 53, 11177–11181 (2014). https://doi.org/10.1002/ange.201404490

    Article  CAS  Google Scholar 

  17. Kenry, Chen, C., Liu, B.: Enhancing the performance of pure organic room-temperature phosphorescent luminophores. Nat. Commun. 10, 2111 (2019). https://doi.org/10.1038/s41467-019-10033-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xia, Y., Du, Y., Xiang, Q., Humphrey, M.G.: Highly efficient room-temperature phosphorescent materials with a heavy-atom effect of bromine. New J. Chem. 45, 4930–4933 (2021). https://doi.org/10.1039/d0nj05713d

    Article  CAS  Google Scholar 

  19. Li, J.-A., Zhou, J., Mao, Z., Xie, Z., Yang, Z., Xu, B., Liu, C., Chen, X., Ren, D., Pan, H., Shi, G., Zhang, Y., Chi, Z.: Transient and persistent room-temperature mechanoluminescence from a white-light-emitting AlEgen with tricolor emission switching triggered by light. Angew. Chem. Int. Edit. 57, 6449–6453 (2018). https://doi.org/10.1002/ange.201800762

    Article  CAS  Google Scholar 

  20. Zhao, C., Jin, Y., Wang, J., Cao, X., Ma, X., Tian, H.: Heavy-atom-free amorphous materials with facile preparation and efficient room-temperature phosphorescence emission. Chem. Commun. 55, 5355–5358 (2019). https://doi.org/10.1039/c9cc01594a

    Article  CAS  Google Scholar 

  21. Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015). https://doi.org/10.1039/c4cs00273c

    Article  CAS  PubMed  Google Scholar 

  22. Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., Lu, X.: Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012). https://doi.org/10.1039/c1ra00768h

    Article  CAS  Google Scholar 

  23. Barrow, S.J., Kasera, S., Rowland, M.J., del Barrio, J., Scherman, O.A.: Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015). https://doi.org/10.1021/acs.chemrev.5b00341

    Article  CAS  PubMed  Google Scholar 

  24. Dsouza, R.N., Pischel, U., Nau, W.M.: Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem. Rev. 111, 7941–7980 (2011). https://doi.org/10.1021/cr200213s

    Article  CAS  PubMed  Google Scholar 

  25. Ghale, G., Nau, W.M.: Dynamically analyte-responsive macrocyclic host-fluorophore systems. Accounts Chem. Res. 47, 2150–2159 (2014). https://doi.org/10.1021/ar500116d

    Article  CAS  Google Scholar 

  26. Yang, X., Wang, R., Kermagoret, A., Bardelang, D.: Oligomeric cucurbituril complexes: from peculiar assemblies to emerging applications. Angew. Chem. Int. Edit. 59, 21280–21292 (2020). https://doi.org/10.1002/anie.202004622

    Article  CAS  Google Scholar 

  27. Ma, X., Wang, J., Tian, H.: Assembling-induced emission: an efficient approach for amorphous metal-free organic emitting materials with room temperature phosphorescence. Accounts Chem. Res. 52, 738–748 (2019). https://doi.org/10.1021/acs.accounts.8b00620

    Article  CAS  Google Scholar 

  28. Jiang, T., Wang, X., Wang, J., Hu, G., Ma, X.: Humidity- and temperature-tunable multicolor luminescence of cucurbit 8 uril-based supramolecular assembly. ACS Appl. Mater. Interfaces 11, 14399–14407 (2019). https://doi.org/10.1021/acsami.9b03112

    Article  CAS  PubMed  Google Scholar 

  29. Qu, G., Zhang, Y., Ma, X.: Recent progress on pure organic room temperature phosphorescence materials based on host-guest interactions. Chin. Chem. Lett. 30, 1809–1814 (2019). https://doi.org/10.1016/j.cclet.2019.07.042

    Article  CAS  Google Scholar 

  30. Ma, X.-K., Zhang, Y.-M., Yu, Q., Zhang, H., Zhang, Z., Liu, Y.: A twin-axial pseudorotaxane for phosphorescence cell imaging. Chem. Commun. 57, 1214–1217 (2021). https://doi.org/10.1039/d0cc06717b

    Article  CAS  Google Scholar 

  31. Zhang, Z.-Y., Chen, Y., Liu, Y.: Efficient room-temperature phosphorescence of a solid-state supramolecule enhanced by cucurbit[6]uril. Angew. Chem. Int. Edit. 58, 6028–6032 (2019). https://doi.org/10.1002/anie.201901882

    Article  CAS  Google Scholar 

  32. Gong, Y., Chen, H., Ma, X., Tian, H.: A cucurbit[7]uril based molecular shuttle encoded by visible room-temperature phosphorescence. Chemphyschem 17, 1934–1938 (2016). https://doi.org/10.1002/cphc.201500901

    Article  CAS  PubMed  Google Scholar 

  33. Wang, J., Huang, Z., Ma, X., Tian, H.: Visible-light-excited room-temperature phosphorescence in water by cucurbit[8]uril—mediated supramolecular assembly. Angew. Chem. Int. Edit. 59, 9928–9933 (2020). https://doi.org/10.1002/anie.201914513

    Article  CAS  Google Scholar 

  34. Ma, X.-K., Zhang, W., Liu, Z., Zhang, H., Zhang, B., Liu, Y.: Supramolecular pins with ultralong efficient phosphorescence. Adv. Mater. (2021). https://doi.org/10.1002/adma.202007476

    Article  PubMed  PubMed Central  Google Scholar 

  35. Boiocchi, M., Del Boca, L., Gomez, D.E., Fabbrizzi, L., Licchelli, M., Monzani, E.: Nature of urea-fluoride interaction: incipient and definitive proton transfer. J. Am. Chem. Soc. 126, 16507–16514 (2004). https://doi.org/10.1021/jo051766q

    Article  CAS  PubMed  Google Scholar 

  36. Peng, X.J., Wu, Y.K., Fan, J.L., Tian, M.Z., Han, K.L.: Colorimetric and ratiometric fluorescence sensing of fluoride: tuning selectivity in proton transfer. J. Org. Chem. 70, 10524–10531 (2005). https://doi.org/10.1021/ja045936c

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21001040), and the projects of the Science and Technology Support of Guizhou province (Grant No. QKHZC[2020]4Y161).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zeng Xi or Heng Luo.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1636 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yang, J., Zhang, S. et al. Construction of a room-temperature phosphorescence system by cucurbit[8]uril-based supramolecular assembly. J Incl Phenom Macrocycl Chem 102, 429–437 (2022). https://doi.org/10.1007/s10847-022-01129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-022-01129-2

Keywords

Navigation