Skip to main content
Log in

Polyhedral smoothed finite element method for thermoelastic analysis

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Thermoelastic analysis by means of three-dimensional polyhedral elements based on the Smoothed Finite elements method (S-FEM), for example nodal Cell-based S-FEM (CS-FEM), Node-based S-FEM (NS-FEM), and Edge-based S-FEM (ES-FEM), was studied. S-FEM allows implicit shape functions, making it possible to construct shape functions of S-FEM based polyhedral elements in a straightforward manner. The performance of S-FEM based polyhedral elements was compared with one another and with the conventional finite elements including hexahedral and tetrahedral element. Numerical examples show that the polyhedral elements by means of CS-FEM and ES-FEM provide better accuracy and convergence rate than conventional hexahedral finite elements, while the polyhedral elements by means of NS-FEM leads to spurious mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Rashid and M. Selimotic, A three-dimensional finite element method with arbitrary polyhedral elements, International J. for Numerical Methods in Engineering, 67 (2) (2006) 226–252.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Wicke, M. Botsch and M. Gross, A finite element method on convex polyhedra, Computer Graphics Forum, 26 (3) (2007) 355–364.

    Article  Google Scholar 

  3. P. Milbradt and T. Pick, Polytope finite elements, International J. for Numerical Methods in Engineering, 73 (12) (2008) 1811–1835.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. E. Bishop, A displacement-based finite element formulation for general polyhedra using harmonic shape functions, International J. for Numerical Methods in Engineering, 97 (1) (2014) 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Martin, P. Kaufmann, M. Botsch, M. Wicke and M. Gross, Polyhedral finite elements using harmonic basis functions, Computer Graphics Forum, 27 (5) (2008) 1521–1529.

    Article  Google Scholar 

  6. S. E. Mousavi and N. Sukumar, Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Computational Mechanics, 47 (5) (2011) 535–554.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. S. Floater, G. Kos and M. Reimers, Mean value coordinates in 3d, Computer Aided Geometric Design, 22 (7) (2005) 623–631.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Manzini, A. Russo and N. Sukumar, New perspectives on polygonal and polyhedral finite element methods, Mathematical Models & Methods in Applied Sciences, 24 (8) (2014) 1665–1699.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Talischi and G. H. Paulino, Addressing integration error for polygonal finite elements through polynomial projections: A patch test connection, Mathematical Models & Methods in Applied Sciences, 24 (8) (2014) 1701–1727.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. B. da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Mathematical Models & Methods in Applied Sciences, 23 (1) (2013) 199–214.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. R. Dohrmann, S. W. Key and M. W. Heinstein, Methods for connecting dissimilar three-dimensional finite element meshes, International J. for Numerical Methods in Engineering, 47 (5) (2000) 1057–1080.

    Article  MATH  Google Scholar 

  12. D. Sohn and S. Jin, Polyhedral elements with strain smoothing for coupling hexahedral meshes at arbitrary nonmatching interfaces, Computer Methods in Applied Mechanics and Engineering, 293 (2015) 92–113.

    Article  MathSciNet  Google Scholar 

  13. S. Ghosh and S. Moorthy, Elastic-plastic analysis of arbitrary heterogeneous materials with the voronoi-cell finite-element method, Computer Methods in Applied Mechanics and Engineering, 121 (1–4) (1995) 373–409.

    Article  MATH  Google Scholar 

  14. H. Chi, C. Talischi, O. Lopez-Pamies and G. H. Paulino, Polygonal finite elements for finite elasticity, International J. for Numerical Methods in Engineering, 101 (4) (2015) 305–328.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. W. Spring and G. H. Paulino, Computational homogenization of the debonding of particle reinforced composites: The role of interphases in interfaces, Computational Materials Science, 109 (2015) 209–224.

    Article  Google Scholar 

  16. B. El Said, D. Ivanov, A. C. Long and S. R. Hallett, Multiscale modelling of strongly heterogeneous 3d composite structures using spatial voronoi tessellation, J. of the Mechanics and Physics of Solids, 88 (2016) 50–71.

    Article  Google Scholar 

  17. D. W. Spring, S. E. Leon and G. H. Paulino, Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture, International J. of Fracture, 189 (1) (2014) 33–57.

    Article  Google Scholar 

  18. A. Khoei, R. Yasbolaghi and S. Biabanaki, A polygonal finite element method for modeling crack propagation with minimum remeshing, International J. of Fracture, 194 (2) (2015) 123–148.

    Article  Google Scholar 

  19. C. Talischi, G. H. Paulino and C. H. Le, Honeycomb wachspress finite elements for structural topology optimization, Structural and Multidisciplinary Optimization, 37 (6) (2009) 569–583.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Duczek and U. Gabbert, The finite cell method for polygonal meshes: Poly-fcm, Computational Mechanics, 58 (4) (2016) 587–618.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. R. Liu, K. Y. Dai and T. T. Nguyen, A smoothed finite element method for mechanics problems, Computational Mechanics, 39 (6) (2007) 859–877.

    Article  MATH  Google Scholar 

  22. J. S. Chen, C. T. Wu, S. Yoon and Y. You, A stabilized conforming nodal integration for galerkin mesh-free methods, International J. for Numerical Methods in Engineering, 50 (2) (2001) 435–466.

    Article  MATH  Google Scholar 

  23. G. R. Liu, A generalized gradient smoothing technique and the smoothed bilinear form for galerkin formulation of a wide class of computational methods, International J. of Computational Methods, 5 (2) (2008) 199–236.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Nguyen-Xuan, H. V. Nguyen, S. Bordas, T. Rabczuk and M. Duflot, A cell-based smoothed finite element method for three dimensional solid structures, KSCE J. Civ. Eng., 16 (7) (2012) 1230–1242.

    Article  Google Scholar 

  25. G. R. Liu, T. Nguyen-Thoi, H. Nguyen-Xuan and K. Y. Lam, A node-based smoothed finite element method (nsfem) for upper bound solutions to solid mechanics problems, Computers & Structures, 87 (1–2) (2009) 14–26.

    Article  Google Scholar 

  26. T. Nguyen-Thoi, G. R. Liu and H. Nguyen-Xuan, Additional properties of the node-based smoothed finite element method (ns-fem) for solid mechanics problems, International J. of Computational Methods, 6 (4) (2009) 633–666.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. R. Liu, T. Nguyen-Thoi and K. Y. Lam, An edge-based smoothed finite element method (es-fem) for static, free and forced vibration analyses of solids, J. of Sound and Vibration, 320 (4–5) (2009) 1100–1130.

    Article  Google Scholar 

  28. Z. C. He, G. Y. Li, Z. H. Zhong, A. G. Cheng, G. Y. Zhang, G. R. Liu, E. Li and Z. Zhou, An edge-based smoothed tetrahedron finite element method (es-t-fem) for 3d static and dynamic problems, Computational Mechanics, 52 (1) (2013) 221–236.

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Nguyen-Thoi, G. R. Liu, K. Y. Lam and G. Y. Zhang, A face-based smoothed finite element method (fs-fem) for 3d linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements, International J. for Numerical Methods in Engineering, 78 (3) (2009) 324–353.

    Article  MathSciNet  MATH  Google Scholar 

  30. K. Y. Dai, G. R. Liu and T. T. Nguyen, An n-sided polygonal smoothed finite element method (nsfem) for solid mechanics, Finite Elements in Analysis and Design, 43 (11–12) (2007) 847–860.

    Article  MathSciNet  Google Scholar 

  31. T. Nguyen-Thoi, G. R. Liu and H. Nguyen-Xuan, An nsided polygonal edge-based smoothed finite element method (nes-fem) for solid mechanics, International J. for Numerical Methods in Biomedical Engineering, 27 (9) (2011) 1446–1472.

    MathSciNet  MATH  Google Scholar 

  32. D. Sohn, J. Han, Y. S. Cho and S. Im, A finite element scheme with the aid of a new carving technique combined with smoothed integration, Computer Methods in Applied Mechanics and Engineering, 254 (2013) 42–60.

    Article  MathSciNet  MATH  Google Scholar 

  33. K. Lee, Y. Son and S. Im, Three-dimensional variable-node elements based upon cs-fem for elastic-plastic analysis, Computers & Structures, 158 (2015) 308–332.

    Article  Google Scholar 

  34. S. Jin, D. Sohn and S. Im, Node-to-node scheme for three-dimensional contact mechanics using polyhedral type variable-node elements, Computer Methods in Applied Mechanics and Engineering, 304 (2016) 217–242.

    Article  MathSciNet  Google Scholar 

  35. J. Kim and S. Im, Polygonal type variable-node elements by means of the smoothed finite element method for analysis of two-dimensional fluid-solid interaction problems in viscous incompressible flows, Computers & Structures, 182 (2017) 475–490.

    Article  Google Scholar 

  36. C. Lee, H. Kim and S. Im, Polyhedral elements by means of node/edge-based smoothed finite element method, International J. for Numerical Methods in Engineering, 110 (11) (2017) 1069–1100.

    Article  MathSciNet  Google Scholar 

  37. S. Wu, G. Liu, H. Zhang and G. Zhang, A node-based smoothed point interpolation method (ns-pim) for threedimensional thermoelastic problems, Numerical Heat Transfer, Part A: Applications, 54 (12) (2008) 1121–1147.

    Article  Google Scholar 

  38. S. C. Wu, G. R. Li, H. O. Zhang and G. Y. Zhang, A nodebased smoothed point interpolation method (ns-pim) for thermoelastic problems with solution bounds, International J. of Heat and Mass Transfer, 52 (5–6) (2009) 1464–1471.

    Article  MATH  Google Scholar 

  39. S. C. Wu, G. R. Liu, X. Y. Cui, T. T. Nguyen and G. Y. Zhang, An edge-based smoothed point interpolation method (es-pim) for heat transfer analysis of rapid manufacturing system, International J. of Heat and Mass Transfer, 53 (9–10) (2010) 1938–1950.

    Article  MATH  Google Scholar 

  40. G. Wu, J. Zhang, Y. L. Li, L. R. Yin and Z. Q. Liu, Analysis of transient thermo-elastic problems using a cellbased smoothed radial point interpolation method, International J. of Computational Methods, 13 (5) (2016).

    Google Scholar 

  41. S. Z. Feng, X. Y. Cui and G. Y. Li, Analysis of transient thermo-elastic problems using edge-based smoothed finite element method, International J. of Thermal Sciences, 65 (2013) 127–135.

    Article  Google Scholar 

  42. S. Z. Feng, X. Y. Cui and G. Y. Li, Transient thermal mechanical analyses using a face-based smoothed finite element method (fs-fem), International J. of Thermal Sciences, 74 (2013) 95–103.

    Article  Google Scholar 

  43. S. Z. Feng, X. Y. Cui, G. Y. Li, H. Feng and F. X. Xu, Thermo-mechanical analysis of functionally graded cylindrical vessels using edge-based smoothed finite element method, International J. of Pressure Vessels and Piping, 111 (2013) 302–309.

    Article  Google Scholar 

  44. S. Feng, X. Cui and G. Li, Thermo-mechanical analyses of composite structures using face-based smoothed finite element method, International J. of Applied Mechanics, 6 (2) (2014) 1450020.

    Article  Google Scholar 

  45. S. Feng, X. Cui and G. Li, Thermo-mechanical analysis of composite pressure vessels using edge-based smoothed finite element method, International J. of Computational Methods, 11 (6) (2014) 1350089.

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Z. Feng, X. Y. Cui, A. M. Li and G. Z. Xie, A face-based smoothed point interpolation method (fs-pim) for analysis of nonlinear heat conduction in multi-material bodies, International J. of Thermal Sciences, 100 (2016) 430–437.

    Article  Google Scholar 

  47. X. Y. Cui, Z. C. Li, H. Feng and S. Z. Feng, Steady and transient heat transfer analysis using a stable node-based smoothed finite element method, International J. of Thermal Sciences, 110 (2016) 12–25.

    Article  Google Scholar 

  48. G.-R. Liu and T. T. Nguyen, Smoothed finite element methods, CRC Press, Boca Raton (2010).

    Book  Google Scholar 

  49. O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The finite element method: Its basis and fundamentals, 7th Ed., Elsevier: Butterworth-Heinemann (2013).

    MATH  Google Scholar 

  50. J. L. Nowinski, Theory of thermoelasticity with applications, Sijthoff & Noordhoff International Publishers (1978).

    Book  MATH  Google Scholar 

  51. M. A. Puso, J. S. Chen, E. Zywicz and W. Elmer, Meshfree and finite element nodal integration methods, International J. for Numerical Methods in Engineering, 74 (3) (2008) 416–446.

    Article  MathSciNet  MATH  Google Scholar 

  52. Z. Q. Zhang and G. R. Liu, Solution bound and nearly exact solution to nonlinear solid mechanics problems based on the smoothed fem concept, Engineering Analysis with Boundary Elements, 42 (2014) 99–114.

    Article  MathSciNet  MATH  Google Scholar 

  53. C. Lee, H. Kim, J. Kim and S. Im, Polyhedral elements using an edge-based smoothed finite element method for nonlinear elastic deformations of compressible and nearly incompressible materials, Computational Mechanics (2017) Online available.

    Google Scholar 

  54. S. Beissel and T. Belytschko, Nodal integration of the element-free Galerkin method, Computer Methods in Applied Mechanics and Engineering, 139 (1–4) (1996) 49–74.

    Article  MathSciNet  MATH  Google Scholar 

  55. Z. Q. Zhang and G. R. Liu, Temporal stabilization of the node-based smoothed finite element method and solution bound of linear elastostatics and vibration problems, Computational Mechanics, 46 (2) (2010) 229–246.

    Article  MathSciNet  MATH  Google Scholar 

  56. H. Feng, X. Y. Cui, G. Y. Li and S. Z. Feng, A temporal stable node-based smoothed finite element method for threedimensional elasticity problems, Computational Mechanics, 53 (5) (2014) 859–876.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyoung Im.

Additional information

Recommended by Associate Editor Chang-Wan Kim

Hobeom Kim received his B.S. (2013) in Mechanical Engineering from Inha University, Korea. His M.S. (2014) is from KAIST, Korea. He is a Ph.D. candidate in Mechanical Engineering at KAIST. His current interests are computational methods for thermomechanical contact analysis.

Seyoung Im received the B.S. (1976) in Mechanical Engineering from Seoul National University, Korea and Ph.D. (1985) in Theoretical and Applied Mechanics from University of Illinois at Urbana-Champaign, USA. He is currently a Professor at the Department of Mechanical Engineering in Korea Advanced Institute of Science and Technology (KAIST). His current interests are computational solid mechanics and multiphysics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Im, S. Polyhedral smoothed finite element method for thermoelastic analysis. J Mech Sci Technol 31, 5937–5949 (2017). https://doi.org/10.1007/s12206-017-1138-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-017-1138-5

Keywords

Navigation