Skip to main content
Log in

An arbitrary multi-node extended multiscale finite element method for thermoelastic problems with polygonal microstructures

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A coupling extended multiscale finite element method (P-CEMsFEM) is developed for the numerical analysis of thermoelastic problems with polygonal microstructures. In this method, the polygonal microstructures are effectively represented by polygonal coarse-grid elements and the corresponding numerical base functions are constructed for the temperature and displacement fields, respectively, by a unified method with the corresponding equivalent matrices. To reflect the interaction of deformations among different directions, the additional coupling terms are introduced into the numerical base functions. In addition, an improved downscaling technique is proposed to directly obtain the satisfying microscopic solutions in the P-CEMsFEM. Moreover, an arbitrary multi-node strategy is developed to further improve the computational accuracy for the two-dimensional thermoelastic problems. Two types of representative numerical examples are presented. The first type examples are given to testify the proposed multiscale method and the results indicate that the P-CEMsFEM has high accuracy and efficiency for the thermoelastic analysis of heterogeneous multiphase materials and structures. The second type examples testify that the P-CEMsFEM is applicable for practical engineering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Alzina, A., Toussaint, E., Beakou, A.: Multiscale modeling of the thermoelastic behavior of braided fabric composites for cryogenic structures. Int. J. Solids Struct. 44(21), 6842–6859 (2007)

    Article  MATH  Google Scholar 

  • Babuska, I., Osborn, J.E.: Generalized finite-element methods—their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20(3), 510–536 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Babuška, I., Caloz, G., Osborn, J.E.: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31(4), 945–981 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Budarapu, P.R., Gracie, R., Bordas, S.P.A., Rabczuk, T.: An adaptive multiscale method for quasi-static crack growth. Comput. Mech. 53(6), 1129–1148 (2013)

    Article  Google Scholar 

  • Budarapu, P.R., Gracie, R., Yang, S.W., Zhuang, X.Y., Rabczuk, T.: Efficient coarse graining in multiscale modeling of fracture. Theor. Appl. Fract. Mech. 69, 126–143 (2014)

    Article  Google Scholar 

  • Devries, F., Dumontet, H., Duvaut, G., Lene, F.: Homogenization and damage for composite structures. Int. J. Numer. Methods Eng. 27(2), 285–298 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Efendiev, Y., Pankov, A.: Numerical homogenization of nonlinear random parabolic operators. Multiscale Model. Simul. 2(2), 237–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Efendiev, Y., Hou, T.Y., Ginting, V.: Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci. 2(4), 553–589 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Fish, J., Yu, Q., Shek, K.: Computational damage mechanics for composite materials based on mathematical homogenization. Int. J. Numer. Methods Eng. 45(11), 1657–1679 (1999)

    Article  MATH  Google Scholar 

  • Ghosh, S., Mallett, R.: Voronoi cell finite elements. Comput. Struct. 50(1), 33–46 (1994)

    Article  MATH  Google Scholar 

  • Ghosh, S., Mukhopadhyay, S.N.: A material based finite-element analysis of heterogeneous media involving Dirichlet tessellations. Comput. Methods Appl. Mech. Eng. 104(2), 211–247 (1993)

    Article  MATH  Google Scholar 

  • Goupee, A.J., Vel, S.S.: Multiscale thermoelastic analysis of random heterogeneous materials: part II: direct micromechanical failure analysis and multiscale simulations. Comput. Mater. Sci. 48(1), 39–53 (2010a)

    Article  Google Scholar 

  • Goupee, A.J., Vel, S.S.: Transient multiscale thermoelastic analysis of functionally graded materials. Compos. Struct. 92(6), 1372–1390 (2010b)

    Article  Google Scholar 

  • Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Kouznetsova, V.G.: Computational homogenization for the multi-scale analysis of multi-phase materials. Ph.D. thesis, Eindhoven University of Technology, Eindhoven (2002)

  • Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro–macro modeling of heterogeneous materials. Comput. Mech. 27(1), 37–48 (2001)

    Article  MATH  Google Scholar 

  • Li, H., Zhang, H.W., Zheng, Y.G.: A coupling extended multiscale finite element method for dynamic analysis of heterogeneous saturated porous media. Int. J. Numer. Methods Eng. 104(1), 18–47 (2015)

    MathSciNet  MATH  Google Scholar 

  • Liu, H., Zhang, H.W.: A p-adaptive multi-node extended multiscale finite element method for 2D elastostatic analysis of heterogeneous materials. Comput. Mater. Sci. 73, 79–92 (2013)

    Article  Google Scholar 

  • Lv, J., Zhang, H.W., Yang, D.S.: Multiscale method for mechanical analysis of heterogeneous materials with polygonal microstructures. Mech. Mater. 56, 38–52 (2013)

    Article  Google Scholar 

  • Lv, J., Liu, H., Zhang, H.W., Liu, L.: Multiscale method for geometrical nonlinear analysis of fluid actuated cellular structures with arbitrary polygonal microstructures. J. Aerosp. Eng. 29(4), 04015082 (2016)

    Article  Google Scholar 

  • Ozdemir, I., Brekelmans, W.A.M., Geers, M.G.D.: Computational homogenization for heat conduction in heterogeneous solids. Int. J. Numer. Methods Eng. 73(2), 185–204 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Papanicolau, G., Bensoussan, A., Lions, J.L.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    Google Scholar 

  • Rabizadeh, E., Bagherzadeh, A.S., Rabczuk, T.: Adaptive thermo-mechanical finite element formulation based on goal-oriented error estimation. Comput. Mater. Sci. 102, 27–44 (2015)

    Article  Google Scholar 

  • Rabizadeh, E., Bagherzadeh, A.S., Rabczuk, T.: Goal-oriented error estimation and adaptive mesh refinement in dynamic coupled thermoelasticity. Comput. Struct. 173, 187–211 (2016)

    Article  Google Scholar 

  • Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput. Methods Appl. Mech. Eng. 155(1–2), 181–192 (1998)

    Article  MATH  Google Scholar 

  • Suquet, P.M.: Local and global aspects in the mathematical theory of plasticity. In: Sawczuk, A., Bianchi, G. (eds.) Plasticity Today: Modelling, Methods and Applications, pp. 279–309. Elsevier, London (1985)

  • Talebi, H., Silani, M., Bordas, S.P., Kerfriden, P., Rabczuk, T.: A computational library for multiscale modeling of material failure. Comput. Mech. 53(5), 1047–1071 (2014)

    Article  MathSciNet  Google Scholar 

  • Talebi, H., Silani, M., Rabczuk, T.: Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Adv. Eng. Softw. 80, 82–92 (2015)

    Article  Google Scholar 

  • Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Tamma, K.K., Namburu, R.R.: Computational approaches with applications to non-classical and classical thermomechanical problems. Appl. Mech. Rev. 50(9), 514–551 (1997)

    Article  Google Scholar 

  • Tarada, K.: Nonlinear Homogenization Method for Practical Applications. Computational Methods in Micromechanics, pp. 1–16. ASME, New York (1995)

    Google Scholar 

  • Temizer, I., Wriggers, P.: Homogenization in finite thermoelasticity. J. Mech. Phys. Solids 59(2), 344–372 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Toledano, A., Murakami, H.: A high-order mixture model for periodic particulate composites. Int. J. Solids Struct. 23(7), 989–1002 (1987)

    Article  MATH  Google Scholar 

  • Vel, S.S., Goupee, A.J.: Multiscale thermoelastic analysis of random heterogeneous materials. Comput. Mater. Sci. 48(1), 22–38 (2010)

    Article  Google Scholar 

  • Yang, D., Zhang, S., Zhang, H.: Thermal stress analysis of functionally graded material based on coupling extended multiscale finite element method. Acta Mater. Compos. Sin. 32(4), 1107–1117 (2015)

    Google Scholar 

  • Zhang, H.W., Wang, H., Wang, J.B.: Parametric variational principle based elastic–plastic analysis of materials with polygonal and Voronoi cell finite element methods. Finite Elem. Anal. Des. 43(3), 206–217 (2007a)

    Article  Google Scholar 

  • Zhang, H.W., Zhang, S., Bi, J.Y., Schrefler, B.A.: Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach. Int. J. Numer. Methods Eng. 69(1), 87–113 (2007b)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, H.W., Fu, Z.D., Wu, J.K.: Coupling multiscale finite element method for consolidation analysis of heterogeneous saturated porous media. Adv. Water. Res. 32(2), 268–279 (2009)

    Article  Google Scholar 

  • Zhang, H.W., Lv, J., Zheng, Y.G.: A new multiscale computational method for mechanical analysis of closed liquid cell materials. Cmes-Comp. Model. Eng. 68(1), 55–93 (2010a)

    Google Scholar 

  • Zhang, H.W., Wu, J.K., Fu, Z.D.: Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials. Comput. Mech. 45(6), 623–635 (2010b)

    Article  MATH  Google Scholar 

  • Zhang, H.W., Wu, J.K., Lu, J., Fu, Z.D.: Extended multiscale finite element method for mechanical analysis of heterogeneous materials. Acta. Mech. Sin.-prc. 26(6), 899–920 (2010c)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, H.W., Liu, H., Wu, J.K.: A uniform multiscale method for 2D static and dynamic analyses of heterogeneous materials. Int. J. Numer. Methods Eng. 93(7), 714–746 (2013a)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, S., Yang, D.S., Zhang, H.W., Zheng, Y.G.: Coupling extended multiscale finite element method for thermoelastic analysis of heterogeneous multiphase materials. Comput. Struct. 121, 32–49 (2013b)

    Article  Google Scholar 

  • Zhang, H.W., Lu, M.K., Zheng, Y.G., Zhang, S.: General coupling extended multiscale FEM for elasto-plastic consolidation analysis of heterogeneous saturated porous media. Int. J. Numer. Anal. Methods 39(1), 63–95 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The supports from the National Natural Science Foundation of China (Nos. 11772082, 11672062 and 11772083), the LiaoNing Revitalization Talents Program (No. XLYC1807193), the 111 Project (No. B08014) and Fundamental Research Funds for the Central Universities (Nos. DUT17ZD307 and DUT17LK26) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Zhang, H., Lv, J. et al. An arbitrary multi-node extended multiscale finite element method for thermoelastic problems with polygonal microstructures. Int J Mech Mater Des 16, 35–56 (2020). https://doi.org/10.1007/s10999-019-09458-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-019-09458-w

Keywords

Navigation