Skip to main content
Log in

Comparison of all-atom and coarse-grained normal mode analysis in the elastic network model

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Elastic network-based normal mode analyses (EN-NMA) of four pairs of open-closed proteins (Lactoferrin, Maltodextrin-binding protein, LAO-binding protein, and Adenylate kinase) were conducted using both all-atom and coarse-grained models. The results indicated that the performance of the all-atom model was similar to that of the coarse-grained model in terms of predicting the conformational changes of backbones. Moreover, dynamic behavior was examined by studying relative atomic displacements and shapes of the dominant mode. For instance, for Maltodextrin-binding protein, the results from the all-atom model differed from those of the coarse-grained model, especially for residues that are biologically relevant. The coarse-grained model has better computational efficiency than the allatom model. However, the former may misrepresent the key dynamics of a protein related to biological functions as a consequence of excessive coarse approximation. Considering that the current power even in a high-end personal computer is sufficient to handle most of protein structures with up to 1,000 residues in a reasonable manner, which can only be used with supercomputers a few decades ago, an all-atom-based EN-NMA may deserve more attention as a reliable and powerful computational tool for protein dynamics study over the conventional coarse-graining approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. A. Sharff, L. Rodseth, J. Spurlino and F. Quiocho, Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis, Biochemistry,31 (1992) 10657–10663.

    Article  Google Scholar 

  2. M. Xiao, J. Reifenberger, A. Wells, C. Baldacchino, L. Chen, P. Ge, H. Sweeney and P. Selvin, An actin-dependent conformational change in myosin, Nature Structural Biology, 10 (2003) 402–408.

    Article  Google Scholar 

  3. M. Rossmann, M. Morais, P. Leiman and W. Zhang, Combining X-ray crystallography and electron microscopy, Structure, 13 (2005) 355–362.

    Article  Google Scholar 

  4. R. Ishima and D. A. Torchia, Protein dynamics from NMR, Nature Structural Biology, 7 (2000) 740–743.

    Article  Google Scholar 

  5. H. R. Saibil, Conformational changes studied by cryoelectron microscopy, Nature Structural Biology, 7 (2000) 711–714.

    Article  Google Scholar 

  6. O. Miyashita and F. Tama, Normal mode analysis techniques in structural biology, Encyclopedia of Life Science (2007) 1–9.

    Google Scholar 

  7. V. Tozzini, Coarse-grained models for proteins, Current Opinion in Structural Biology, 15 (2005) 144–150.

    Article  Google Scholar 

  8. P. J. Bond, J. Holyoake, A. Ivetac, S. Khalid and M. S. P. Sansom, Coarse-grained molecular dynamics simulations of membrane proteins and peptides, Journal of Structural Biology,157 (2007) 593–605.

    Article  Google Scholar 

  9. S. Izvekov and G. A. Voth, A multiscale coarse-graining method for biomolecular systems, The journal of Physical Chemistry B, 109 (2005) 2469–2473.

    Article  Google Scholar 

  10. W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das and H. C. Andersen, The multiscale coarse-graining method I: a rigorous bridge between atomistic and coarse-grained models, Journal of Chemical Physis,128 (2008) 1–11.

    Google Scholar 

  11. B. Brooks and M. Karplus, Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor, Proceedings of the National Academy of Sciences of the Untied States of American, 80 (1983) 6571–6575.

    Article  Google Scholar 

  12. W. Krebs, V. Alexandrov, C. Wilson, N. Echols, H. Yu and M. Gerstein, Normal mode analysis of macromolecular motions in a database framework: Developing mode concentration as a useful classifying statistic, PROTEINS: Structure, Function, and Genetics, 48 (2002) 682–695.

    Article  Google Scholar 

  13. K. Suhre and Y.-H. Sanejouand, ElNémo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement, Nucleic Acids Research,32 (2004) W610–W614.

    Article  Google Scholar 

  14. J. Ma, Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes, Structure,13 (2005) 373–380.

    Article  Google Scholar 

  15. B. Brooks, D. Janezic and M. Karplus, Harmonic analysis of large systems. I. Methodology, Journal of Computational Chemistry, 16 (1995) 1522–1542.

    Article  Google Scholar 

  16. M. Levitt, C. Sander and P. Stern, Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme, Journal of Molecular Biology, 181 (1985) 423–427.

    Article  Google Scholar 

  17. C. Brooks, M. Karplus and B. Pettitt, Proteins: A theoretical perspective of dynamics, structure, and thermodynamics, J. Wiley, New York, USA (1988).

    Google Scholar 

  18. M. Hu and B. Kim, Flexibility of the exportins Cse1p and Xpot depicted by elastic network model, Journal of Molecular Modeling, 17 (2011) 1735–1741.

    Article  Google Scholar 

  19. M. M. Tirion, Large amplitude elastic motions in proteins from a single-parameter, atomic analysis, Physical review letters, 77 (1996) 1905–1908.

    Article  Google Scholar 

  20. K. Hinsen, Analysis of domain motions by approximate normal mode calculations, Proteins, 33 (1998) 417–429.

    Article  Google Scholar 

  21. F. Tama, F. X. Gadea, O. Marques and Y.-H. Sanejouand, Building-block approach for determining low-frequency normal modes of macromolecules, PROTEINS: Structure, Function, and Genetics, 41 (2000) 1–7.

    Article  Google Scholar 

  22. G. Li and Q. Cui, A coarse-grained normal mode approach for macromolecules an efficient implementation and application of Ca2+-ATPase, Biophysical Journal, 83 (2002) 2457–2474.

    Article  Google Scholar 

  23. A. R. Atilgan, S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin and I. Bahar, Anisotropy of fluctuation dynamics of proteins with an elastic network model, Biophysical Journal,80 (2001) 505–515.

    Article  Google Scholar 

  24. M. Lu and J. Ma, A minimalist network model for coarsegrained normal mode analysis and its application to biomolecular x-ray crystallography, Proceedings of the National Academy of Sciences of the Untied States of American,105 (2008) 15358–15363.

    Article  Google Scholar 

  25. K. Moritsugu and J. C. Smith, Coarse-grained biomolecular simulation with REACH: realistic extension algorithm via covariance hessian, Biophysical Journal, 93 (2007) 3460–3469.

    Article  Google Scholar 

  26. E. Lyman, J. Pfaendtner and G. A. Voth, Systematic multiscale parameterization of heterogeneous elastic network models of proteins, Biophysical Journal, 95 (2008) 4183–4192.

    Article  Google Scholar 

  27. J.-I. Kim, S. Na and K. Eom, Large protein dynamics described by hierarchical-component mode synthesis, Journal of Chemical Theory and Computation, 5 (2009) 1931–1939.

    Article  Google Scholar 

  28. O. Kurkcuoglu, R. L. Jernigan and P. Doruker, Collective dynamics of large proteins from mixed coarse-grained elastic network model, QSAR & Combinatorial Science, 24 (2005) 443–448.

    Article  Google Scholar 

  29. O. Kurkcuoglu, O. T. Turgut, S. Cansu, R. L. Jernigan and P. Doruker, Focused functional dynamics of supramolecules by use of a mixed-resolution elastic network model, Biophysical Journal, 97 (2009) 1178–1187.

    Article  Google Scholar 

  30. N. Kantarci-Carsibasi, T. Haliloglu and P. Doruker, Conformational transition pathways explored by Monte Carlo simulation integrated with collective modes, Biophysical Journal, 95 (2008) 5862–5873.

    Article  Google Scholar 

  31. I. Bahar and A. Rader, Coarse-grained normal mode analysis in structural biology, Current Opinion in Structural Biology,15 (2005) 586–592.

    Article  Google Scholar 

  32. I. Bahar, T. R. Lezon, A. Bakan and I. H. Shrivastava, Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins, Chemical Reviews, 110 (2010) 1463–1497.

    Article  Google Scholar 

  33. M. K. Kim, R. L. Jernigan and G. S. Chirikjian, An elastic network model of HK97 capsid maturation, Journal of Structural Biology, 143 (2003) 107–117.

    Article  Google Scholar 

  34. I. Bahar, C. Chennubhotla and D. Tobi, Intrinsic enzyme dynamics in the unbound state and relation to allosteric regulation, Current Opinion in Structural Biology, 17 (2007) 633–640.

    Article  Google Scholar 

  35. F. Tama and I. Charles L. Brooks, Symmetry, form, and shape: guiding principles for robustness in macromolecular machines, Annual Review of Biophysics and Biomolecular Structure, 35 (2006) 115–133.

    Article  Google Scholar 

  36. M. K. Kim, R. L. Jernigan and G. S. Chirikjian, Efficient generation of feasible pathways for protein conformational transitions, Biophysical Journal, 83 (2002) 1620–1630.

    Article  Google Scholar 

  37. M. K. Kim, G. S. Chirikjian and R. L. Jernigan, Elastic models of conformational transitions in macromolecules, Journal of Molecular Graphics and Modelling, 21 (2002) 151–160.

    Article  Google Scholar 

  38. M. Hu, S. Raj, B. Kim, W. K. Liu, S. Baik, T. Kim, B.-S. Lim and M. K. Kim, Precise spring constant assignment in elastic network model for identification of vibration frequency and modeshape, The Journal of Mechanical Science and Technology, 24 (2010) 1771–1780.

    Article  Google Scholar 

  39. L. Yang, G. Song and R. L. Jernigan, Protein elastic network models and the ranges of cooperativity, Proceedings of the National Academy of Sciences of the Untied States of American, 106 (2009) 12347–12352.

    Article  Google Scholar 

  40. G. S. Chirikjian and A. B. Kyatkin, Engineering applications of noncommutative harmonic analysis, CRC Press, Boca Raton, USA (2001).

    MATH  Google Scholar 

  41. Y. -H. Sanejouand, Functional information from slow mode shapes, in Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems, Chapman & Hall/CRC, Boca Raton, USA (2006).

    Google Scholar 

  42. H. Goldstein, Classical mechanics, Addison-Wesley, Cambridge, USA (1950).

    Google Scholar 

  43. F. Tama and C. B. III, Unveiling molecular mechanisms of biological functions in large macromolecular assemblies using elastic network normal mode analysis, in Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems, Chapman & Hall/CRC, Boca Raton, USA (2006).

    Google Scholar 

  44. H. Valadie, J. J. Lacapcire, Y.-H. Sanejouand and C. Etchebest, Dynamical properties of the MscL of Escherichia coli: A normal mode analysis, Journal of Molecular Biology,332 (2003) 657–674.

    Article  Google Scholar 

  45. S. Nicolay and Y.-H. Sanejouand, Functional modes of proteins are among the most robust, Physical review letters,96 (2006) 078104.

    Article  Google Scholar 

  46. M. Lu and J. Ma, The role of shape in determining molecular motions, Biophysical Journal, 89 (2005) 2395–2401.

    Article  Google Scholar 

  47. P. D. L. Rios, F. Cecconi, A. Pretre, G. Dietler, O. Michielin, F. Piazza and B. Juanico, Functional dynamics of PDZ binding domains: A normal-mode analysis, Biophysical Journal, 89 (2005) 14–21.

    Article  Google Scholar 

  48. J. Ma and M. Karplus, Ligand-induced conformational changes in ras p21 a normal mode and energy minimization analysis, Journal of Molecular Biology, 274 (1997) 114–131.

    Article  Google Scholar 

  49. W. Adam, W. Van and Q. Cui, Comparison of mode analyses at different resolutions applied to nucleic acid systems, Biophysical Journal, 89 (2005) 2939–2949.

    Article  Google Scholar 

  50. F. Tama and Y.-H. Sanejouand, Conformational change of proteins arising from normal modes calculations, Protein Engineering, 14 (2001) 1–6.

    Article  Google Scholar 

  51. J. I. Jeong, Y. Jang and M. K. Kim, A connection rule for a-carbon coarse-grained elastic network models using chemical bond information, Journal of Molecular Graphics and Modelling, 24 (2006) 296–306.

    Article  Google Scholar 

  52. T. Z. Sen, Y. Feng, J. V. Garcia, A. Kloczkowski and R. L. Jernigan, The extent of cooperativity of protein motions observed with elastic network models is similar for atomic and coarser-grained models, Journal of Chemical Theory and Computation, 2 (2006) 696–704.

    Article  Google Scholar 

  53. J. C. Spurlino, G.-Y. Lu and F. A. Quiocho, The 2.3 Angstrom resolution structure of the maltose-or maltodextrinbinding protein, a primary receptor of bacterial active transport and chemotaxis, Journal of Biological Chemistry, 266 (1991) 5202–5219.

    Google Scholar 

  54. J. D. Fox, K. M. Routzahn, M. H. Bucher and D. S. Waugh, Maltodextrin-binding proteins from diverse bacteria and archaea are potenet solubility enhancers, FEBS Letters, 537 (2003) 53–57.

    Article  Google Scholar 

  55. S. Seo and M. K. Kim, A universal morph server for nucleic acids, proteins and their complexes, Nucleic Acids Research,40 (2012) W531–W536.

    Article  Google Scholar 

  56. W. Humphrey, A. Dalke and K. Schulten, VMD — visual molecular dynamics, Journal of Molecular Graphics, 14 (1996) 33–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Ki Kim.

Additional information

Recommended by Editor Yeon June Kang

Ming-Wen Hu received his B.S and M.S. degrees in Mechanical Engineering from Yuan Ze University in 2002 and National Taiwan Ocean University in 2004, respectively. He obtained his Ph.D. in Mechanical and Industrial Engineering from University of Massachusetts Amherst in 2013. His research focuses on coarse-grained modeling on the structural analysis of macromolecules. The current topic includes the conformational study on transport factors of nucleocytoplasmic transport.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, MW., O’Riordan, B., Kim, B. et al. Comparison of all-atom and coarse-grained normal mode analysis in the elastic network model. J Mech Sci Technol 27, 3267–3275 (2013). https://doi.org/10.1007/s12206-013-0849-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-013-0849-5

Keywords

Navigation