Skip to main content

Integrating Molecular Docking and Molecular Dynamics Simulations

  • Protocol
  • First Online:
Docking Screens for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2053))

Abstract

Computational methods, applied at the early stages of the drug design process, use current technology to provide valuable insights into the understanding of chemical systems in a virtual manner, complementing experimental analysis. Molecular docking is an in silico method employed to foresee binding modes of small compounds or macromolecules in contact with a receptor and to predict their molecular interactions. Moreover, the methodology opens up the possibility of ranking these compounds according to a hierarchy determined using particular scoring functions. Docking protocols assign many approximations, and most of them lack receptor flexibility. Therefore, the reliability of the resulting protein–ligand complexes is uncertain. The association with the costly but more accurate MD techniques provides significant complementary with docking. MD simulations can be used before docking since a series of “new” and broader protein conformations can be extracted from the processing of the resulting trajectory and employed as targets for docking. They also can be utilized a posteriori to optimize the structures of the final complexes from docking, calculate more detailed interaction energies, and provide information about the ligand binding mechanism. Here, we focus on protocols that offer the docking–MD combination as a logical approach to improving the drug discovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lounnas V, Ritschel T, Kelder J, McGuire R, Bywater RP, Foloppe N (2013) Current progress in structure-based rational drug design marks a new mindset in drug discovery. Comput Struct Biotechnol J 5:1–14

    Article  Google Scholar 

  3. Salum LB, Polikarpov I, Andricopulo AD (2008) Structure-based approach for the study of estrogen receptor binding affinity and subtype selectivity. J Chem Inf Model 48:2243–2253

    Article  CAS  PubMed  Google Scholar 

  4. Fischer E (1894) Influence of configuration on the action of enzymes. Ber Dtsch Chem Ges 27:2985–2993

    Article  CAS  Google Scholar 

  5. Chen Y-C (2015) Beware of docking! Trends Pharmacol Sci 36:78–95

    Article  PubMed  CAS  Google Scholar 

  6. Hou X, Du J, Zhang J, Du L, Fang H, Li M (2013) How to improve docking accuracy of AutoDock4. 2: a case study using different electrostatic potentials. J Chem Inf Model 53:188–200

    Article  CAS  PubMed  Google Scholar 

  7. Lee MR, Sun Y (2007) Improving docking accuracy through molecular mechanics generalized born optimization and scoring. J Chem Theory Comput 3:1106–1119

    Article  CAS  PubMed  Google Scholar 

  8. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Article  CAS  PubMed  Google Scholar 

  9. Doerr S, Harvey M, Noé F, De Fabritiis G (2016) HTMD: High-throughput molecular dynamics for molecular discovery. J Chem Theory Comput 12:1845–1852

    Article  CAS  PubMed  Google Scholar 

  10. Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Nati Acad Sci U S A 108:10184–10189

    Article  CAS  Google Scholar 

  11. Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mortier J, Rakers C, Bermudez M, Murgueitio MS, Riniker S, Wolber G (2015) The impact of molecular dynamics on drug design: applications for the characterization of ligand–macromolecule complexes. Drug Discov Today 20:686–702

    Article  CAS  PubMed  Google Scholar 

  13. Alonso H, Bliznyuk AA, Gready JE (2006) Combining docking and molecular dynamic simulations in drug design. Med Res Rev 26:531–568

    Article  CAS  PubMed  Google Scholar 

  14. Fang Y (2012) Ligand–receptor interaction platforms and their applications for drug discovery. Expert Opin Drug Discovery 7:969–988

    Article  CAS  Google Scholar 

  15. Weigelt J (2010) Structural genomics—impact on biomedicine and drug discovery. Exp Cell Res 316:1332–1338

    Article  CAS  PubMed  Google Scholar 

  16. Irwin JJ, Shoichet BK (2005) ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  18. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  19. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  20. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  PubMed  Google Scholar 

  21. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489

    Article  CAS  PubMed  Google Scholar 

  22. DeLano WL (2002) The PyMOL Molecular Graphics System. De-Lano Scientific, San Carlos, CA. http://www.pymol.org

    Google Scholar 

  23. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  24. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  25. Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  Google Scholar 

  26. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  27. van der Spoel D, van Maaren PJ, Caleman C (2012) GROMACS molecule & liquid database. Bioinformatics 28:752–753

    Article  PubMed  CAS  Google Scholar 

  28. Nelson MT, Humphrey W, Gursoy A, Dalke A, Kalé LV, Skeel RD et al (1996) NAMD: a parallel, object-oriented molecular dynamics program. Int J High Perform Comput Appl 10:251–268

    Google Scholar 

  29. Case D, Berryman J, Betz R, Cerutti D, Cheatham T III, Darden T et al (2015) AMBER. University of California, San Francisco

    Google Scholar 

  30. Yuriev E, Agostino M, Ramsland PA (2011) Challenges and advances in computational docking: 2009 in review. J Mol Recognit 24:149–164

    Article  CAS  PubMed  Google Scholar 

  31. Jain AN (2006) Scoring functions for protein-ligand docking. Curr Protein Pept Sci 7:407–420

    Article  CAS  PubMed  Google Scholar 

  32. Malisi C, Schumann M, Toussaint NC, Kageyama J, Kohlbacher O, Höcker B (2012) Binding pocket optimization by computational protein design. PLoS One 7:e52505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R et al (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gainza P, Roberts KE, Georgiev I, Lilien RH, Keedy DA, Chen C-Y et al (2013) OSPREY: protein design with ensembles, flexibility, and provable algorithms. Methods Enzymol 523:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hong Enriquez RP, Pavan S, Benedetti F, Tossi A, Savoini A, Berti F et al (2012) Designing short peptides with high affinity for organic molecules: a combined docking, molecular dynamics, and Monte Carlo approach. J Chem Theory Comput 8:1121–1128

    Article  CAS  PubMed  Google Scholar 

  36. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303:1813–1818

    Article  CAS  PubMed  Google Scholar 

  37. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The protein data bank. Nucleic Acids 28:235–242

    Article  CAS  Google Scholar 

  38. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Chem 4:17

    Article  CAS  Google Scholar 

  39. Csizmadia P (2000) MarvinSketch and MarvinView: molecule applets for the World Wide Web. In: Proceedings of ECSOC-3 The Third International Electronic Conference on Synthetic Organic Chemistry, September 1–30, 1999, pp 367–369

    Google Scholar 

  40. Ultra C (2001) CambridgeSoft. Cambridge, MA, USA

    Google Scholar 

  41. Mullins JG (2012) 5 structural modelling pipelines in next generation sequencing projects. Adv Protein Chem Struct Biol 89:117

    Article  CAS  PubMed  Google Scholar 

  42. Feinstein WP, Brylinski M (2015) Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J Cheminform 7:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Morra G, Genoni A, Neves M, Merz J, Colombo G (2010) Molecular recognition and drug-lead identification: what can molecular simulations tell us? Curr Med Chem 17:25–41

    Article  CAS  PubMed  Google Scholar 

  44. Ivetac A, Andrew McCammon J (2011) Molecular recognition in the case of flexible targets. Curr Pharm Des 17:1663–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 19:120–127

    Article  CAS  PubMed  Google Scholar 

  46. Lu H, Tonge PJ (2010) Drug–target residence time: critical information for lead optimization. Curr Opin Chem Biol 14:467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59:4035–4061

    Article  PubMed  CAS  Google Scholar 

  48. Barril X, Morley SD (2005) Unveiling the full potential of flexible receptor docking using multiple crystallographic structures. J Med Chem 48:4432–4443

    Article  CAS  PubMed  Google Scholar 

  49. Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput Aided Mol Des 22:693–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin J-H, Perryman AL, Schames JR, McCammon JA (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc 124:5632–5633

    Article  CAS  PubMed  Google Scholar 

  51. Ivetac A, Swift SE, Boyer PL, Diaz A, Naughton J, Young JA et al (2014) Discovery of novel inhibitors of HIV-1 reverse transcriptase through virtual screening of experimental and theoretical ensembles. Chem Biol Drug Des 83:521–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rueda M, Bottegoni G, Abagyan R (2010) Recipes for the selection of experimental protein conformations for virtual screening. J Chem Inf Model 50:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nichols SE, Baron R, Ivetac A, McCammon JA (2011) Predictive power of molecular dynamics receptor structures in virtual screening. J Chem Inf Model 51:1439–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tian S, Sun H, Pan P, Li D, Zhen X, Li Y et al (2014) Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility. J Chem Inf Model 54:2664–2679

    Article  CAS  PubMed  Google Scholar 

  55. Gao C, Desaphy J, Vieth M (2017) Are induced fit protein conformational changes caused by ligand-binding predictable? A molecular dynamics investigation. J Comput Chem 38:1229–1237

    Article  CAS  PubMed  Google Scholar 

  56. Yadav IS, Nandekar PP, Shrivastava S, Sangamwar A, Chaudhury A, Agarwal SM (2014) Ensemble docking and molecular dynamics identify knoevenagel curcumin derivatives with potent anti-EGFR activity. Gene 539:82–90

    Article  CAS  PubMed  Google Scholar 

  57. Watanabe Y, Fukuyoshi S, Kato K, Hiratsuka M, Yamaotsu N, Hirono S et al (2017) Investigation of substrate recognition for cytochrome P450 1A2 mediated by water molecules using docking and molecular dynamics simulations. J Mol Graph Model 74:326–336

    Article  CAS  PubMed  Google Scholar 

  58. Carlevaro CM, Martins-Da-Silva JH, Savino W, Caffarena ER (2013) Plausible binding mode of the active α4β1 antagonist, Mk-0617, determined by docking and free energy calculations. J Theor Comput Chem 12:1250108

    Article  CAS  Google Scholar 

  59. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Silva JHM, Dardenne LE, Savino W, Caffarena ER (2010) Analysis of α4 β1integrin specific antagonists binding modes: structural insights by molecular docking, molecular dynamics and linear interaction energy method for free energy calculations. J Braz Chem Soc 21:546–555

    Article  Google Scholar 

  61. Wang Q, Edupuganti R, Tavares CD, Dalby KN, Ren P (2015) Using docking and alchemical free energy approach to determine the binding mechanism of eEF2K inhibitors and prioritizing the compound synthesis. Front Mol Biosci 2:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Clark AJ, Tiwary P, Borrelli K, Feng S, Miller EB, Abel R, Friesner RA, Berne BJ (2016) Prediction of protein–ligand binding poses via a combination of induced fit docking and metadynamics simulations. J Chem Theory Comput 12:2990–2998

    Article  CAS  PubMed  Google Scholar 

  63. Sinko W, Lindert S, McCammon JA (2013) Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem Biol Drug Des 81:41–49

    Article  CAS  PubMed  Google Scholar 

  64. Brandt AM, Batista PR, Souza-Silva F, Alves CR, Caffarena ER (2016) Exploring the unbinding of Leishmania (L.) amazonensis CPB derived-epitopes from H2 MHC class I proteins. Proteins 84:473–487

    Article  CAS  PubMed  Google Scholar 

  65. Sutherland JJ, Nandigam RK, Erickson JA, Vieth M (2007) Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy. J Chem Inf Model 47:2293–2302

    Article  CAS  PubMed  Google Scholar 

  66. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang R, Fang X, Lu Y, Yang C-Y, Wang S (2005) The PDBbind database: methodologies and updates. J Med Chem 48:4111–4119

    Article  CAS  PubMed  Google Scholar 

  69. Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y et al (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49:1455–1474

    Article  CAS  PubMed  Google Scholar 

  70. Biesiada J, Porollo A, Meller J (2012) On setting up and assessing docking simulations for virtual screening. Methods Mol Biol 928:1–16

    CAS  PubMed  Google Scholar 

  71. Schmidt T, Bergner A, Schwede T (2014) Modelling three-dimensional protein structures for applications in drug design. Drug Discov Today 19:890–897

    Article  CAS  PubMed  Google Scholar 

  72. Wu G, Robertson DH, Brooks CL, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER—A CHARMm-based MD docking algorithm. J Comput Chem 24:1549–1562

    Article  CAS  PubMed  Google Scholar 

  73. Zhou M, Luo H, Li R, Ding Z (2013) Exploring the binding mode of HIV-1 Vif inhibitors by blind docking, molecular dynamics and MM/GBSA. RSC Adv 3:22532–22543

    Article  CAS  Google Scholar 

  74. Hetényi C, van der Spoel D (2002) Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci 11:1729–1737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Hetényi C, van der Spoel D (2006) Blind docking of drug-sized compounds to proteins with up to a thousand residues. FEBS Lett 580:1447–1450

    Article  PubMed  CAS  Google Scholar 

  76. Ghersi D, Sanchez R (2009) Improving accuracy and efficiency of blind protein-ligand docking by focusing on predicted binding sites. Proteins 74:417–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pérot S, Sperandio O, Miteva MA, Camproux A-C, Villoutreix BO (2010) Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov Today 15:656–667

    Article  PubMed  CAS  Google Scholar 

  78. Leis S, Schneider S, Zacharias M (2010) In silico prediction of binding sites on proteins. Curr Med Chem 17:1550–1562

    Article  CAS  PubMed  Google Scholar 

  79. Harris R, Olson AJ, Goodsell DS (2008) Automated prediction of ligand-binding sites in proteins. Proteins 70:1506–1517

    Article  CAS  PubMed  Google Scholar 

  80. Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ (2010) Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discovery 5:597–607

    Article  CAS  Google Scholar 

  81. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11:905–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bajorath J (2002) Integration of virtual and high-throughput screening. Nat Rev Drug Discov 1:882–894

    Article  CAS  PubMed  Google Scholar 

  83. Ghosh S, Nie A, An J, Huang Z (2006) Structure-based virtual screening of chemical libraries for drug discovery. Curr Opin Chem Biol 10:194–202

    Article  CAS  PubMed  Google Scholar 

  84. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  85. Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18:178–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ferrari AM, Wei BQ, Costantino L, Shoichet BK (2004) Soft docking and multiple receptor conformations in virtual screening. J Med Chem 47:5076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Källblad P, Dean PM (2003) Efficient conformational sampling of local side-chain flexibility. J Mol Biol 326:1651–1665

    Article  PubMed  Google Scholar 

  88. Lexa KW, Carlson HA (2012) Protein flexibility in docking and surface mapping. Q Rev Biophys 45:301–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666

    Article  CAS  PubMed  Google Scholar 

  90. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  PubMed  Google Scholar 

  91. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  CAS  PubMed  Google Scholar 

  92. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  93. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  94. Vanommeslaeghe K, MacKerell AD Jr (2012) Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52:3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vanommeslaeghe K, Raman EP, MacKerell AD Jr (2012) Automation of the CHARMM general force field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52:3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585

    Article  CAS  PubMed  Google Scholar 

  97. Abrams C, Bussi G (2013) Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy 16:163–199

    Article  CAS  Google Scholar 

  98. Jorgensen WL, Thomas LL (2008) Perspective on free-energy perturbation calculations for chemical equilibria. J Chem Theory Comput 4:869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99:12562–12566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224–230

    Article  CAS  PubMed  Google Scholar 

  101. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919–11929

    Article  CAS  PubMed  Google Scholar 

  102. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J Comput Phys 23:187–199

    Article  Google Scholar 

  103. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  104. Lindahl E, Hess B, Van Der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    Article  CAS  Google Scholar 

  105. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  CAS  Google Scholar 

  106. Gullingsrud J, Saam J, Phillips J (2006) psfgen User’s Guide, vol 51. Theoretical and Computational Biophysics Group, University of Illinois and Beckman Institute, Urbana, p 61801

    Google Scholar 

  107. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  109. Berendsen HJ, Postma JP, van Gunsteren WF, & Hermans J (1981) Interaction models for water in relation to protein hydration. In Intermolecular forces (pp. 331–342). Springer, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto R. Caffarena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Santos, L.H.S., Ferreira, R.S., Caffarena, E.R. (2019). Integrating Molecular Docking and Molecular Dynamics Simulations. In: de Azevedo Jr., W. (eds) Docking Screens for Drug Discovery. Methods in Molecular Biology, vol 2053. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9752-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9752-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9751-0

  • Online ISBN: 978-1-4939-9752-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics