Skip to main content
Log in

Membrane-Stretch-Induced Cell Death in Deep Tissue Injury: Computer Model Studies

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Deep tissue injury (DTI) is a serious pressure ulcer, involving a mass of necrotic soft tissue under bony prominences as a consequence of sustained tissue deformations. Though several processes are thought to participate in the onset and development of DTI (e.g., cellular deformation, ischemia, and ischemia-reperfusion), the specific mechanisms responsible for it are currently unknown. Recent work indicated that pathological processes at the cell level, which relate to cell deformation, are involved in the etiology. We hypothesized that sustained tissue deformations can lead to elevated intracellular concentration of cell metabolites, e.g., calcium ion (Ca2+), due to a stretch-induced increase in the local permeability of plasma membranes. This may ultimately lead to cell death due to intracellular cytotoxic concentrations of metabolites. In order to investigate this hypothesis, computational models were developed, for determining compression-induced membrane stretches and trends of times for reaching intracellular cytotoxic Ca2+ levels due to uncontrolled Ca2+ influx through stretched membranes. The simulations indicated that elevated compressive cell deformations exceeding 25% induce large tensional strains (>5%, and up to 11.5%) in membranes. These are likely to increase Ca2+ influx from the extracellular space into the cytosol through the stretched sites. Consistent with this assumption, the Ca2+ transport model showed high sensitivity of times for cell death to changes in membrane resistance. These results may open a new path in pressure ulcer research, by indicating how global tissue deformations are transformed to plasma membrane deformations, which in turn, affect transport properties and eventually, cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10

Similar content being viewed by others

References

  1. Addae-Mensah, K.A., and J.P. Wikswo. Measurement techniques for cellular biomechanics in vitro. Exp Biol Med (Maywood) 233 (7):792–809, 2008.

    Article  Google Scholar 

  2. Agam L., Gefen A. Pressure ulcers and deep tissue injury: a bioengineering perspective. J. Wound Care 16 (8):336–342, 2007.

    Google Scholar 

  3. Allen, D.G., N.P. Whitehead, and E.W. Yeung. Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol 567 (Pt 3):723–735, 2005.

    Article  Google Scholar 

  4. Ankrom, M.A., R.G. Bennett, S. Sprigle, D. Langemo, J.M. Black, D.R. Berlowitz, and C.H. Lyder. Pressure-related deep tissue injury under intact skin and the current pressure ulcer staging systems. Adv Skin Wound Care 18 (1):35–42, 2005.

    Article  Google Scholar 

  5. Baaijens, F.P., W.R. Trickey, T.A. Laursen, and F. Guilak. Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte. Ann Biomed Eng 33 (4):494–501, 2005.

    Article  Google Scholar 

  6. Bader, D.L., T. Ohashi, M.M. Knight, D.A. Lee, and M. Sato. Deformation properties of articular chondrocytes: a critique of three separate techniques. Biorheology 39 (1–2):69–78, 2002.

    Google Scholar 

  7. Bausch, A.R., F. Ziemann, A.A. Boulbitch, K. Jacobson, and E. Sackmann. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75 (4):2038–49, 1998.

    Article  Google Scholar 

  8. Becker, W. M., L. J. Kleinsmith, and J. Hardin. The World of the Cell. San Francisco: Benjamin/Cummings Pub. Co., p. 25, 2003.

  9. Black, J., M. Baharestani, J. Cuddigan, B. Dorner, L. Edsberg, D. Langemo, M. E. Posthauer, C. Ratliff, and G. Taler. National Pressure Ulcer Advisory Panel’s updated pressure ulcer staging system. Dermatol. Nurs. 19(4):343–349; quiz 350, 2007.

    Google Scholar 

  10. Bouten, C.V., M.M. Knight, D.A. Lee, and D.L. Bader. Compressive deformation and damage of muscle cell subpopulations in a model system. Ann Biomed Eng 29 (2):153–63, 2001.

    Article  Google Scholar 

  11. Bouten, C.V., C.W. Oomens, F.P. Baaijens, and D.L. Bader. The etiology of pressure ulcers: skin deep or muscle bound? Arch Phys Med Rehabil 84 (4):616–9, 2003.

    Article  Google Scholar 

  12. Boya, P., and G. Kroemer. Lysosomal membrane permeabilization in cell death. Oncogene 27 (50):6434–51, 2008.

    Article  Google Scholar 

  13. Breuls, R.G., C.V. Bouten, C.W. Oomens, D.L. Bader, and F.P. Baaijens. Compression induced cell damage in engineered muscle tissue: an in vitro model to study pressure ulcer aetiology. Ann Biomed Eng 31 (11):1357–64, 2003.

    Article  Google Scholar 

  14. Breuls, R.G., B.G. Sengers, C.W. Oomens, C.V. Bouten, and F.P. Baaijens. Predicting local cell deformations in engineered tissue constructs: a multilevel finite element approach. J Biomech Eng 124 (2):198–207, 2002.

    Article  Google Scholar 

  15. Carafoli, E., L. Santella, D. Branca, and M. Brini. Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol 36 (2):107–260, 2001.

    Article  Google Scholar 

  16. Ceelen, K.K., C.W. Oomens, and F.P. Baaijens. Microstructural analysis of deformation-induced hypoxic damage in skeletal muscle. Biomech Model Mechanobiol 7 (4):277–84, 2008.

    Article  Google Scholar 

  17. Ceelen, K. K., C. W. Oomens, A. Stekelenburg, D. L. Bader, and F. P. Baaijens. Changes in intracellular calcium during compression of C2C12 myotubes. Exp. Mech., 49:25–33, 2009.

    Article  Google Scholar 

  18. Chen, A., and V.T. Moy. Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion. Biophys J 78 (6):2814–20, 2000.

    Article  Google Scholar 

  19. Collinsworth, A.M., S. Zhang, W.E. Kraus, and G.A. Truskey. Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. Am J Physiol Cell Physiol 283 (4):C1219–27, 2002.

    Google Scholar 

  20. Crank, J. The Mathematics of Diffusion. Oxford: Clarendon Press, 1975.

  21. Esapa, C.T., R.A. McIlhinney, and D.J. Blake. Fukutin-related protein mutations that cause congenital muscular dystrophy result in ER-retention of the mutant protein in cultured cells. Hum Mol Genet 14 (2):295–305, 2005.

    Article  Google Scholar 

  22. Evans, E.A. Structure and deformation properties of red blood cells: concepts and quantitative methods. Methods Enzymol 173:3–35, 1989.

    Article  Google Scholar 

  23. Ferko, M.C., A. Bhatnagar, M.B. Garcia, and P.J. Butler. Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells. Ann Biomed Eng 35 (2):208–23, 2007.

    Article  Google Scholar 

  24. Fisher, J.L., and S.S. Margulies. Modeling the effect of stretch and plasma membrane tension on Na+ -K + -ATPase activity in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 292 (1):L40–53, 2007.

    Article  Google Scholar 

  25. Gawlitta, D., W. Li, C.W. Oomens, F.P. Baaijens, D.L. Bader, and C.V. Bouten. The relative contributions of compression and hypoxia to development of muscle tissue damage: an in vitro study. Ann Biomed Eng 35 (2):273–84, 2007.

    Article  Google Scholar 

  26. Gawlitta, D., C.W. Oomens, D.L. Bader, F.P. Baaijens, and C.V. Bouten. Temporal differences in the influence of ischemic factors and deformation on the metabolism of engineered skeletal muscle. J Appl Physiol 103 (2):464–73, 2007.

    Article  Google Scholar 

  27. Geddes-Klein, D.M., K.B. Schiffman, and D.F. Meaney. Mechanisms and consequences of neuronal stretch injury in vitro differ with the model of trauma. J Neurotrauma 23 (2):193–204, 2006.

    Article  Google Scholar 

  28. Geddes, D.M., R.S. Cargill, 2nd, and M.C. LaPlaca. Mechanical stretch to neurons results in a strain rate and magnitude-dependent increase in plasma membrane permeability. J Neurotrauma 20 (10):1039–49, 2003.

    Article  Google Scholar 

  29. Gefen, A. Risk factors for a pressure-related deep tissue injury: a theoretical model. Med Biol Eng Comput 45 (6):563–73, 2007.

    Article  Google Scholar 

  30. Gefen, A. Bioengineering models of deep tissue injury. Adv Skin Wound Care 21 (1):30–6, 2008.

    Article  Google Scholar 

  31. Gefen, A., L.H. Cornelissen, D. Gawlitta, D.L. Bader, and C.W. Oomens. The free diffusion of macromolecules in tissue-engineered skeletal muscle subjected to large compression strains. J Biomech 41 (4):845–53, 2008.

    Article  Google Scholar 

  32. Gefen, A., N. Gefen, E. Linder-Ganz, and S.S. Margulies. In vivo muscle stiffening under bone compression promotes deep pressure sores. J Biomech Eng 127 (3):512–24, 2005.

    Article  Google Scholar 

  33. Gefen, A., B. van Nierop, D.L. Bader, and C.W. Oomens. Strain-time cell-death threshold for skeletal muscle in a tissue-engineered model system for deep tissue injury. J Biomech 41 (9):2003–12, 2008.

    Article  Google Scholar 

  34. Gittes, F., B. Mickey, J. Nettleton, and J. Howard. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120 (4):923–34, 1993.

    Article  Google Scholar 

  35. Guilak, F., and V.C. Mow. The mechanical environment of the chondrocyte: a biphasic finite element model of cell–matrix interactions in articular cartilage. J Biomech 33 (12):1663–73, 2000.

    Article  Google Scholar 

  36. Henon, S., G. Lenormand, A. Richert, and F. Gallet. A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys J 76 (2):1145–51, 1999.

    Article  Google Scholar 

  37. Hochmuth, R.M. Micropipette aspiration of living cells. J Biomech 33 (1):15–22, 2000.

    Article  Google Scholar 

  38. Hochmuth, R.M., N. Mohandas, and P.L. Blackshear, Jr. Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Biophys J 13 (8):747–62, 1973.

    Article  Google Scholar 

  39. Jain, M.K., A. Chernomorsky, F.H. Silver, and R.A. Berg. Material properties of living soft tissue composites. J Biomed Mater Res 22 (3 Suppl):311–26, 1988.

    Article  Google Scholar 

  40. Jean, R.P., C.S. Chen, and A.A. Spector. Finite-element analysis of the adhesion-cytoskeleton-nucleus mechanotransduction pathway during endothelial cell rounding: axisymmetric model. J Biomech Eng 127 (4):594–600, 2005.

    Article  Google Scholar 

  41. Johnson, R.M. Membrane stress increases cation permeability in red cells. Biophys J 67 (5):1876–81, 1994.

    Article  Google Scholar 

  42. Jones, W.R., H.P. Ting-Beall, G.M. Lee, S.S. Kelley, R.M. Hochmuth, and F. Guilak. Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J Biomech 32 (2):119–27, 1999.

    Article  Google Scholar 

  43. Kang, I., D. Panneerselvam, V.P. Panoskaltsis, S.J. Eppell, R.E. Marchant, and C.M. Doerschuk. Changes in the hyperelastic properties of endothelial cells induced by tumor necrosis factor-alpha. Biophys J 94 (8):3273–85, 2008.

    Article  Google Scholar 

  44. Kass, G. E., and S. Orrenius. Calcium signaling and cytotoxicity. Environ. Health Perspect. 107(Suppl 1):25–35, 1999.

    Google Scholar 

  45. Kaye, D., D. Pimental, S. Prasad, T. Maki, H.J. Berger, P.L. McNeil, T.W. Smith, and R.A. Kelly. Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro. J Clin Invest 97 (2):281–91, 1996.

    Article  Google Scholar 

  46. Koay, E.J., A.C. Shieh, and K.A. Athanasiou. Creep indentation of single cells. J Biomech Eng 125 (3):334–41, 2003.

    Article  Google Scholar 

  47. LaPlaca, M.C., G.R. Prado, D.K. Cullen, and H.R. Irons. High rate shear insult delivered to cortical neurons produces heterogeneous membrane permeability alterations. Conf Proc IEEE Eng Med Biol Soc 1:2384–7, 2006.

    Article  Google Scholar 

  48. Linder-Ganz, E., S. Engelberg, M. Scheinowitz, and A. Gefen. Pressure-time cell death threshold for albino rat skeletal muscles as related to pressure sore biomechanics. J Biomech 39 (14):2725–32, 2006.

    Article  Google Scholar 

  49. Linder-Ganz, E., and A. Gefen. Mechanical compression-induced pressure sores in rat hindlimb: muscle stiffness, histology, and computational models. J Appl Physiol 96 (6):2034–49, 2004.

    Article  Google Scholar 

  50. Linder-Ganz, E., N. Shabshin, Y. Itzchak, and A. Gefen. Assessment of mechanical conditions in sub-dermal tissues during sitting: a combined experimental-MRI and finite element approach. J Biomech 40 (7):1443–54, 2007.

    Article  Google Scholar 

  51. Makhsous, M., D. Lim, R. Hendrix, J. Bankard, W.Z. Rymer, and F. Lin. Finite element analysis for evaluation of pressure ulcer on the buttock: development and validation. IEEE Trans Neural Syst Rehabil Eng 15 (4):517–25, 2007.

    Article  Google Scholar 

  52. Marucci, M., S.-G.o. Pettersson, G. Ragnarsson, and A. Axelsson. Determination of a diffusion coefficient in a membrane by electronic speckle pattern interferometry: a new method and a temperature sensitivity study. Journal of Physics D: Applied Physics 40:2870–2880, 2007.

    Article  Google Scholar 

  53. Mathur, A.B., A.M. Collinsworth, W.M. Reichert, W.E. Kraus, and G.A. Truskey. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech 34 (12):1545–53, 2001.

    Article  Google Scholar 

  54. McGarry, J. G., and P. J. Prendergast. A three-dimensional finite element model of an adherent eukaryotic cell. Eur. Cell Mater. 7:27–33; discussion 33–34, 2004.

    Google Scholar 

  55. Miller, G.E., and J. Seale. Lymphatic clearance during compressive loading. Lymphology 14(4):161–6, 1981.

    Google Scholar 

  56. Peeters, E.A., C.W. Oomens, C.V. Bouten, D.L. Bader, and F.P. Baaijens. Mechanical and failure properties of single attached cells under compression. J Biomech 38 (8):1685–93, 2005.

    Article  Google Scholar 

  57. Peirce, S.M., T.C. Skalak, and G.T. Rodeheaver. Ischemia-reperfusion injury in chronic pressure ulcer formation: a skin model in the rat. Wound Repair Regen 8 (1):68–76, 2000.

    Article  Google Scholar 

  58. Prado, G.R., J.D. Ross, S.P. DeWeerth, and M.C. LaPlaca. Mechanical trauma induces immediate changes in neuronal network activity. J Neural Eng 2 (4):148–58, 2005.

    Article  Google Scholar 

  59. Proske, U., and D.L. Morgan. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 537(Pt 2):333–45, 2001.

    Article  Google Scholar 

  60. Reddy, N.P., and G.V. Cochran. Interstitial fluid flow as a factor in decubitus ulcer formation. J Biomech 14 (12):879–81, 1981.

    Article  Google Scholar 

  61. Safford, R.E., and J.B. Bassingthwaighte. Calcium diffusion in transient and steady states in muscle. Biophys J 20 (1):113–36, 1977.

    Article  Google Scholar 

  62. Sjostrom, L., P. Bjorntorp, and J. Vrana. Microscopic fat cell size measurements on frozen-cut adipose tissue in comparison with automatic determinations of osmium-fixed fat cells. J Lipid Res 12 (5):521–30, 1971.

    Google Scholar 

  63. Stekelenburg, A., D. Gawlitta, D.L. Bader, and C.W. Oomens. Deep tissue injury: how deep is our understanding? Arch Phys Med Rehabil 89 (7):1410–3, 2008.

    Article  Google Scholar 

  64. Stekelenburg, A., G.J. Strijkers, H. Parusel, D.L. Bader, K. Nicolay, and C.W. Oomens. Role of ischemia and deformation in the onset of compression-induced deep tissue injury: MRI-based studies in a rat model. J Appl Physiol 102 (5):2002–11, 2007.

    Article  Google Scholar 

  65. Stroetz, R.W., N.E. Vlahakis, B.J. Walters, M.A. Schroeder, and R.D. Hubmayr. Validation of a new live cell strain system: characterization of plasma membrane stress failure. J Appl Physiol 90 (6):2361–70, 2001.

    Google Scholar 

  66. Tan, S.C., W.X. Pan, G. Ma, N. Cai, K.W. Leong, and K. Liao. Viscoelastic behaviour of human mesenchymal stem cells. BMC Cell Biol 9:40, 2008.

    Article  Google Scholar 

  67. Tsuji, S., S. Ichioka, N. Sekiya, and T. Nakatsuka. Analysis of ischemia-reperfusion injury in a microcirculatory model of pressure ulcers. Wound Repair Regen 13 (2):209–15, 2005.

    Article  Google Scholar 

  68. Wang, S., C. Jiang, Y. Zhang, J. Chen, B. Wang, Q. Chen, and L. M. Membrane Deformability and Membrane Tension of Single Isolated Mitochondria. Cellular and Molecular Bioengineering 1 (1):67–74, 2008.

    Article  Google Scholar 

  69. Wu, M.M., J. Llopis, S. Adams, J.M. McCaffery, M.S. Kulomaa, T.E. Machen, H.P. Moore, and R.Y. Tsien. Organelle pH studies using targeted avidin and fluorescein-biotin. Chem Biol 7 (3):197–209, 2000.

    Article  Google Scholar 

  70. Yu, Q.C., and P.L. McNeil. Transient disruptions of aortic endothelial cell plasma membranes. Am J Pathol 141 (6):1349–60, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Gefen.

Additional information

Noa Slomka and Shira Or-Tzadikario contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slomka, N., Or-Tzadikario, S., Sassun, D. et al. Membrane-Stretch-Induced Cell Death in Deep Tissue Injury: Computer Model Studies. Cel. Mol. Bioeng. 2, 118–132 (2009). https://doi.org/10.1007/s12195-009-0046-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-009-0046-x

Keywords

Navigation