Skip to main content
Log in

Finite-Element Stress Analysis of a Multicomponent Model of Sheared and Focally-Adhered Endothelial Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 22 March 2007

Abstract

Hemodynamic forces applied at the apical surface of vascular endothelial cells may be redistributed to and amplified at remote intracellular organelles and protein complexes where they are transduced to biochemical signals. In this study we sought to quantify the effects of cellular material inhomogeneities and discrete attachment points on intracellular stresses resulting from physiological fluid flow. Steady-state shear- and magnetic bead-induced stress, strain, and displacement distributions were determined from finite-element stress analysis of a cell-specific, multicomponent elastic continuum model developed from multimodal fluorescence images of confluent endothelial cell (EC) monolayers and their nuclei. Focal adhesion locations and areas were determined from quantitative total internal reflection fluorescence microscopy and verified using green fluorescence protein–focal adhesion kinase (GFP–FAK). The model predicts that shear stress induces small heterogeneous deformations of the endothelial cell cytoplasm on the order of <100 nm. However, strain and stress were amplified 10–100-fold over apical values in and around the high-modulus nucleus and near focal adhesions (FAs) and stress distributions depended on flow direction. The presence of a 0.4 μm glycocalyx was predicted to increase intracellular stresses by ∼2-fold. The model of magnetic bead twisting rheometry also predicted heterogeneous stress, strain, and displacement fields resulting from material heterogeneities and FAs. Thus, large differences in moduli between the nucleus and cytoplasm and the juxtaposition of constrained regions (e.g. FAs) and unattached regions provide two mechanisms of stress amplification in sheared endothelial cells. Such phenomena may play a role in subcellular localization of early mechanotransduction events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Similar content being viewed by others

References

  1. Adamson R. H., G. Clough (1992) Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J. Physiol. 445:473–486

    PubMed  CAS  Google Scholar 

  2. Barbee K. A., T. Mundel, R. Lal, P. F. Davies (1995) Subcellular distribution of shear stress at the surface of flow-aligned, nonaligned endothelial monolayers. Am. J. Physiol. Heart Circ. Physiol. 268:H1765–H1772

    CAS  Google Scholar 

  3. Bursac P., G. Lenormand, B. Fabry, M. Oliver, D. A. Weitz, V. Viasnoff, J. P. Butler, J. J. Fredberg (2005) Cytoskeletal remodelling, slow dynamics in the living cell. Nat. Mater. 4:557–561

    Article  PubMed  CAS  Google Scholar 

  4. Butler P. J., G. Norwich, S. Weinbaum, S. Chien (2001) Shear stress induces a time-, position-dependent increase in endothelial cell membrane fluidity. Am. J. Physiol. Cell Physiol. 280:C962–C969

    PubMed  CAS  Google Scholar 

  5. Butler, P. J., T. C. Tsou, J. Y. Li, S. Usami, and S. Chien. Rate sensitivity of shear-induced changes in the lateral diffusion of endothelial cell membrane lipids: A role for membrane perturbation in shear-induced MAPK activation. FASEB J. 16(2):216–218, 2001

    Google Scholar 

  6. Butler P. J., S. Weinbaum, S. Chien, D. E. Lemons (2000) Endothelium-dependent, shear-induced vasodilation is rate-sensitive. Microcirculation 7:53–65

    Article  PubMed  CAS  Google Scholar 

  7. Caille N., O. Thoumine, Y. Tardy, J. J. Meister (2002) Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35:177–187

    Article  PubMed  Google Scholar 

  8. Charras G. T., M. A. Horton (2002) Determination of cellular strains by combined atomic force microscopy, finite element modeling. Biophys. J. 83:858–879

    PubMed  CAS  Google Scholar 

  9. Charras G. T., B. A. Williams, S. M. Sims, M. A. Horton (2004) Estimating the sensitivity of mechanosensitive ion channels to membrane strain, tension. Biophys. J. 87:2870–2884

    Article  PubMed  CAS  Google Scholar 

  10. Charras G. T., J. C. Yarrow, M. A. Horton, L. Mahadevan, T. J. Mitchison (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435:365–369

    Article  PubMed  CAS  Google Scholar 

  11. Davies P. F. (1995) Flow-mediated endothelial mechanotransduction. [Review] [407 refs]. Physiol. Rev. 75:519–560

    PubMed  CAS  Google Scholar 

  12. Davies P. F., A. Robotewskyj, M. L. Griem (1994) Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J. Clin. Invest. 93:2031–2038

    Article  PubMed  CAS  Google Scholar 

  13. Deguchi S., K. Maeda, T. Ohashi, M. Sato (2005) Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle. J. Biomech. 38:1751–1759

    Article  PubMed  Google Scholar 

  14. DePaola N., M. A. Gimbrone Jr., P. F. Davies, C. F. Dewey Jr. (1992) Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12:1254–1257

    PubMed  CAS  Google Scholar 

  15. Ferko, M. C., B. P. Patterson, P. J. Butler. (2006) High-resolution solid modeling of biological samples imaged with 3D fluorescence microscopy. Microsc. Res. Tech. 69(8):648–655.

    Article  PubMed  Google Scholar 

  16. Florian J. A., J. R. Kosky, K. Ainslie, Z. Pang, R. O. Dull, J. M. Tarbell (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ. Res. 93:e136–e142

    Article  PubMed  CAS  Google Scholar 

  17. Frangos J. A., T. Y. Huang, C. B. Clark (1996) Steady shear, step changes in shear stimulate endothelium via independent mechanisms-superposition of transient and sustained nitric oxide production. Biochem. Biophys. Res. Commun. 224:660–665

    Article  PubMed  CAS  Google Scholar 

  18. Frank P. G., M. P. Lisanti (2006) Role of caveolin-1 in the regulation of the vascular shear stress response. J. Clin. Invest. 116:1222–1225

    Article  PubMed  CAS  Google Scholar 

  19. Fujiwara K., M. Masuda, M. Osawa, Y. Kano, K. Katoh (2001) Is PECAM-1 a mechanoresponsive molecule? Cell Struct. Funct. 26:11–17

    Article  PubMed  CAS  Google Scholar 

  20. Galbraith C. G., R. Skalak, S. Chien (1998) Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton 40:317–330

    Article  PubMed  CAS  Google Scholar 

  21. Gudi S. R., C. B. Clark, J. A. Frangos (1996) Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ. Res. 79:834–839

    PubMed  CAS  Google Scholar 

  22. Haidekker M. A., N. L’Heureux, J. A. Frangos (2000) Fluid shear stress increases membrane fluidity in endothelial cells: A study with DCVJ fluorescence. Am. J. Physiol. Heart Circ. Physiol. 278:H1401–H1406

    PubMed  CAS  Google Scholar 

  23. Helmke B. P., R. D. Goldman, P. F. Davies (2000) Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ. Res. 86:745–752

    PubMed  CAS  Google Scholar 

  24. Helmke B. P., A. B. Rosen, P. F. Davies (2003) Mapping mechanical strain of an endogenous cytoskeletal network in living endothelial cells. Biophys. J. 84:2691–2699

    PubMed  CAS  Google Scholar 

  25. Hu S., J. Chen, B. Fabry, Y. Numaguchi, A. Gouldstone, D. E. Ingber, J. J. Fredberg, J. P. Butler, N. Wang (2003) Intracellular stress tomography reveals stress focusing, structural anisotropy in cytoskeleton of living cells. Am. J. Physiol. Cell Physiol. 285:C1082–C1090

    PubMed  CAS  Google Scholar 

  26. Hu S., L. Eberhard, J. Chen, J. C. Love, J. P. Butler, J. J. Fredberg, G. M. Whitesides, N. Wang (2004) Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device. Am. J. Physiol. Cell Physiol. 287:C1184–C1191

    Article  PubMed  CAS  Google Scholar 

  27. Jalali S., M. A. del Pozo, K. Chen, H. Miao, Y. Li, M. A. Schwartz, J. Y. Shyy, S. Chien (2001) Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl. Acad. Sci. USA 98:1042–1046

    Article  PubMed  CAS  Google Scholar 

  28. Jean R. P., C. S. Chen, A. A. Spector (2005) Finite-element analysis of the adhesion-cytoskeleton-nucleus mechanotransduction pathway during endothelial cell rounding: axisymmetric model. J. Biomech. Eng. 127:594–600

    Article  PubMed  Google Scholar 

  29. Jean R. P., D. S. Gray, A. A. Spector, C. S. Chen (2004) Characterization of the nuclear deformation caused by changes in endothelial cell shape. J. Biomech. Eng. 126:552–558

    Article  PubMed  Google Scholar 

  30. Karcher H., J. Lammerding, H. Huang, R. T. Lee, R. D. Kamm, M. R. Kaazempur-Mofrad (2003) A three-dimensional viscoelastic model for cell deformation with experimental verification. Biophys. J. 85:3336–3349

    PubMed  CAS  Google Scholar 

  31. Koller A., G. Kaley (1991) Endothelial regulation of wall shear stress, blood flow in skeletal muscle microcirculation. Am. J. Physiol. 260:H862–H868

    PubMed  CAS  Google Scholar 

  32. Laudadio R. E., E. J. Millet, B. Fabry, S. S. An, J. P. Butler, J. J. Fredberg (2005) Rat airway smooth muscle cell during actin modulation: Rheology, glassy dynamics. Am. J. Physiol. Cell Physiol. 289:C1388–C1395

    Article  PubMed  CAS  Google Scholar 

  33. Li S., P. Butler, Y. Wang, Y. Hu, D. C. Han, S. Usami, J. L. Guan, S. Chien (2002) The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc. Natl. Acad. Sci. USA 99:3546–3551

    Article  PubMed  CAS  Google Scholar 

  34. Mack P. J., M. R. Kaazempur-Mofrad, H. Karcher, R. T. Lee, R. D. Kamm (2004) Force-induced focal adhesion translocation: Effects of force amplitude, frequency. Am. J. Physiol. Cell Physiol. 287:C954–C962

    Article  PubMed  CAS  Google Scholar 

  35. Mijailovich S. M., M. Kojic, M. Zivkovic, B. Fabry, J. J. Fredberg (2002) A finite element model of cell deformation during magnetic bead twisting. J. Appl. Physiol. 93:1429–1436

    PubMed  Google Scholar 

  36. Mochizuki S., H. Vink, O. Hiramatsu, T. Kajita, F. Shigeto, J. A. Spaan, F. Kajiya (2003) Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release. Am. J. Physiol. Heart Circ. Physiol. 285:H722–H726

    PubMed  CAS  Google Scholar 

  37. Nerem R. M., M. J. Levesque, J. F. Cornhill (1981) Vascular endothelial morphology as an indicator of the pattern of blood flow. J. Biomech. Eng. 103:172–176

    Article  PubMed  CAS  Google Scholar 

  38. Ohayon J., P. Tracqui, R. Fodil, S. Fereol, V. M. Laurent, E. Planus, D. Isabey (2004) Analysis of nonlinear responses of adherent epithelial cells probed by magnetic bead twisting: A finite element model based on a homogenization approach. J. Biomech. Eng 126:685–698

    Article  PubMed  Google Scholar 

  39. Olivier L. A., J. Yen, W. M. Reichert, G. A. Truskey (1999) Short-term cell/substrate contact dynamics of subconfluent endothelial cells following exposure to laminar flow. Biotechnol. Prog. 15:33–42

    Article  PubMed  CAS  Google Scholar 

  40. Pourati J., A. Maniotis, D. Spiegel, J. L. Schaffer, J. P. Butler, J. J. Fredberg, D. E. Ingber, D. Stamenovic, N. Wang (1998) Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am. J. Physiol. 274:C1283–C1289

    PubMed  CAS  Google Scholar 

  41. Radel C., V. Rizzo (2005) Integrin mechanotransduction stimulates caveolin-1 phosphorylation recruitment of Csk to mediate actin reorganization. Am. J. Physiol. Heart Circ. Physiol. 288:H936–H945

    Article  PubMed  CAS  Google Scholar 

  42. Reilly G. C., T. R. Haut, C. E. Yellowley, H. J. Donahue, C. R. Jacobs (2003) Fluid flow induced PGE2 release by bone cells is reduced by glycocalyx degradation whereas calcium signals are not. Biorheology 40:591–603

    PubMed  CAS  Google Scholar 

  43. Rizzo V., A. Sung, P. Oh, J. E. Schnitzer (1998) Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium, its caveolae. J. Biol. Chem. 273:26323–26329

    Article  PubMed  CAS  Google Scholar 

  44. Sato M., M. J. Levesque, R. M. Nerem (1987) An application of the micropipette technique to the measurement of mechanical properties of cultured bovine aortic endothelial cells. J. Biomech. Eng. 109:27–34

    PubMed  CAS  Google Scholar 

  45. Sato M., K. Nagayama, N. Kataoka, M. Sasaki, K. Hane (2000) Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33:127–135

    Article  PubMed  CAS  Google Scholar 

  46. Stamenovic, D., N. Wang, and D. E. Ingber. Tensegrity models of cell-substrate interactions. In King, M. R. (ed.) Principles of Cellular Engineering: Understanding the Biomolecular Interface. 81–101, 2006

  47. Sund S. E., J. A. Swanson, D. Axelrod (1999) Cell membrane orientation visualized by olarized total internal reflection fluorescence. Biophys. J. 77:2266–2283

    Article  PubMed  CAS  Google Scholar 

  48. Tarbell J. M., M. Y. Pahakis (2006) Mechanotransduction, the glycocalyx. J. Intern. Med. 259:339–350

    Article  PubMed  CAS  Google Scholar 

  49. Thi M. M., J. M. Tarbell, S. Weinbaum, D. C. Spray (2004) The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: A “bumper-car” model. Proc. Natl. Acad. Sci. USA 101:16483–16488

    Article  PubMed  CAS  Google Scholar 

  50. Trickey W. R., F. P. Baaijens, T. A. Laursen, L. G. Alexopoulos, F. Guilak (2006) Determination of the Poisson’s ratio of the cell: Recovery properties of chondrocytes after release from complete micropipette aspiration. J. Biomech. 39:78–87

    Article  PubMed  Google Scholar 

  51. Truskey G. A., J. S. Burmeister, E. Grapa, W. M. Reichert (1992) Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances. J. Cell Sci. 103 (Pt 2):491–499

    PubMed  Google Scholar 

  52. Tzima E., M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser, M. A. Schwartz (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431

    Article  PubMed  CAS  Google Scholar 

  53. Wang N., J. P. Butler, D. E. Ingber (1993) Mechanotransduction across the cell surface, through the cytoskeleton. Science 260:1124–1127

    Article  PubMed  CAS  Google Scholar 

  54. Wang N., Z. Suo (2005) Long-distance propagation of forces in a cell. Biochem. Biophys. Res. Commun. 328:1133–1138

    Article  PubMed  CAS  Google Scholar 

  55. Weinbaum S., X. Zhang, Y. Han, H. Vink, S. C. Cowin (2003) Mechanotransduction, flow across the endothelial glycocalyx. Proc. Natl. Acad. Sci. USA 100:7988–7995

    Article  PubMed  CAS  Google Scholar 

  56. Zaidel-Bar R., Z. Kam, B. Geiger (2005) Polarized downregulation of the paxillin-p130CAS-Rac1 pathway induced by shear flow. J. Cell Sci. 118:3997–4007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant to PJB from the National Heart Lung and Blood Institute (R01 HL 077542-01A1), by a National Science Foundation Career Award to PJB (BES 0238910), and by a seed grant from the Center for Optical Technologies, Bethlehem, PA. GFP–FAK was a gift from Song Li, Ph.D., University of California, Berkeley. MBG was supported by the Penn State Biomaterials and Bionanotechnology Summer Institute (NIBIB-NSF EEC 0234026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Butler.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10439-007-9280-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferko, M.C., Bhatnagar, A., Garcia, M.B. et al. Finite-Element Stress Analysis of a Multicomponent Model of Sheared and Focally-Adhered Endothelial Cells. Ann Biomed Eng 35, 208–223 (2007). https://doi.org/10.1007/s10439-006-9223-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9223-4

Keywords

Navigation