Skip to main content

Advertisement

Log in

Use of bismuth shield for protection of superficial radiosensitive organs in patients undergoing computed tomography: a literature review and meta-analysis

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The study aimed to assess the effect of bismuth (Bi) shielding on dose reduction and image quality in computed tomography (CT) through a literature review. A search was conducted in the following databases: Web of Science, PubMed, Google Scholar, and Scopus. Studies that reported estimated dose reduction with bismuth shielding during imaging of the eye, thyroid, and breast were included, and a meta-regression analysis was used to examine the influence of the CT scanner type on the dose reduction. The studies included a total of 237 patients and 34 pediatric and adult anthropomorphic phantoms for whom the radiation dose was reported. Bismuth shielding was recommended in 88.89% of the studies based on the maintenance of appropriate image quality under shielding. Noise associated with Bi shielding was 7.5%, 263%, and 23.5% for the eye, thyroid, and breast, respectively. The fixed-effects pooled estimate of dose reduction was 34% (95% CI: 13–55; p < 0.001) for the eye, 37% (95% CI 14–61; p < 0.001) for the thyroid, and 36% (95% CI 36–55; p < 0.001) for the breast. The image quality, usage of foams, CT scanner type, beam energies, and backscatter radiation were important factors that directly affected the efficacy of Bi shielding to reduce the radiation dose at the superficial radiosensitive organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mehnati P, Ghavami M, Heidari H. Reducing radiation doses in female breast and lung during CT examinations of thorax: A new technique in two scanners. J Biomed Phy Eng. 2017;7(3):217.

    CAS  Google Scholar 

  2. Mehnati P, Malekzadeh R, Sooteh MY, Refahi S. Assessment of the efficiency of new bismuth composite shields in radiation dose decline to breast during chest CT. Egypt J Radiol Nucl Med. 2018;49(4):1187–9.

    Article  Google Scholar 

  3. Mehnati P, Sooteh MY, Malekzadeh R, Divband B. Synthesis and characterization of nano Bi2O3 for radiology shield. Nanomedicine. 2018;5(4):222–26.

    Google Scholar 

  4. Funama Y, Awai K, Hatemura M, et al. Automatic tube current modulation technique for multidetector CT: is it effective with a 64-detector CT? Radiol Phys Technol. 2008;1(1):33–7.

    Article  PubMed  Google Scholar 

  5. Morris P, Perkins A. Diagnostic imaging. The Lancet. 2012;379(9825):1525–33.

    Article  Google Scholar 

  6. Mehnati P, Tirtash MJ, Ghavami M. CT role in the assessment of existence of breast cancerous cells. J Biomed Phys Eng. 2016. https://doi.org/10.22086/jbpe.v0i0.384

    Article  Google Scholar 

  7. Muhogora W, Ahmed N, Alsuwaidi J, et al. Paediatric CT examinations in 19 developing countries: frequency and radiation dose. Radiat Prot Dosim. 2010;140(1):49–58.

    Article  CAS  Google Scholar 

  8. Broder J, Warshauer DM. Increasing utilization of computed tomography in the adult emergency department, 2000–2005. Emerg radiol. 2006;13(1):25–30.

    Article  PubMed  Google Scholar 

  9. Broder J, Fordham LA, Warshauer DM. Increasing utilization of computed tomography in the pediatric emergency department, 2000–2006. Emerg radiol. 2007;14(4):227–32.

    Article  PubMed  Google Scholar 

  10. Smith-Bindman R, Lipson J, Marcus R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078–86.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Saravanakumar A, Vaideki K, Govindarajan K, et al. Assessment of regional pediatric computed tomography dose indices in Tamil Nadu. J Med Phys. 2017;42(1):48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kleibl Z, Kristensen VN. Women at high risk of breast cancer: molecular characteristics, clinical presentation and management. The Breast. 2016;28:136–44.

    Article  PubMed  Google Scholar 

  13. Alizadeh Riabi H, Mehnati P, Mesbahi A. Evaluation of mean glandular dose in a full-field digital mammography unit in Tabriz, Iran. Radiat Prot Dosim. 2010;142(2–4):222–27.

    Article  CAS  Google Scholar 

  14. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J cancer. 2013;49(6):1374–403.

    Article  CAS  PubMed  Google Scholar 

  15. DeSantis C, Ma J, Bryan L, et al. Breast cancer statistics, 2013. CA Cancer J Clin. 2014;64(1):52–62.

    Article  PubMed  Google Scholar 

  16. McCrohan JL, Patterson JF, Gagne R, et al. Average radiation doses in a standard head examination for 250 CT systems. Radiology. 1987;163(1):263–68.

    Article  CAS  PubMed  Google Scholar 

  17. Seidenfuss A, Mayr A, Schmid M, et al. Dose reduction of the female breast in chest CT. AJR Am J Roentgenol. 2014;202(5):W447–W52.

    Article  PubMed  Google Scholar 

  18. Mehnati P, Amirnia A, Jabbari N. Estimating cancer induction risk from abdominopelvic scanning with 6-and 16-slice computed tomography. IJRB. 2017;93(4):416–25.

    CAS  PubMed  Google Scholar 

  19. Hopper KD, King SH, Lobell M, et al. The breast: in-plane X-ray protection during diagnostic thoracic CT–shielding with bismuth radioprotective garments. Radiology. 1997;205(3):853–58.

    Article  CAS  PubMed  Google Scholar 

  20. Hopper KD ed Orbital, thyroid, and breast superficial radiation shielding for patients undergoing diagnostic CT. Seminars in Ultrasound, CT and MRI; 2002: Elsevier.

  21. Mehnati P, Sooteh MY, Malekzadeh R, Divband B, Refahi S. Breast conservation from radiation damage by using nano bismuth shields in chest CT scan. Crescent J Med Biol Sci. 2018; 5:4.

    Google Scholar 

  22. Spampinato S, Gueli AM, Milone P, et al. Dosimetric changes with computed tomography automatic tube-current modulation techniques. Radiol Phys Technol. 2018;11(2):184–91.

    Article  PubMed  Google Scholar 

  23. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–69.

    Article  Google Scholar 

  24. Hopper KD, Neuman JD, King SH, et al. Radioprotection to the eye during CT scanning. AJNR Am J Neuroradiol. 2001;22(6):1194–98.

    CAS  PubMed  Google Scholar 

  25. Colombo P, Pedroli G, Nicoloso M, et al. Evaluation of the efficacy of a bismuth shield during CT examinations. Radiol Med (Torino). 2004;108(5–6):560–68.

    Google Scholar 

  26. McLaughlin D, Mooney R. Dose reduction to radiosensitive tissues in CT. Do commercially available shields meet the users’ needs? Clin Radiol. 2004;59(5):446–50.

    Article  CAS  PubMed  Google Scholar 

  27. Mukundan S Jr, Wang PI, Frush DP, et al. MOSFET dosimetry for radiation dose assessment of bismuth shielding of the eye in children. AJR Am J Roentgenol. 2007;188(6):1648–50.

    Article  PubMed  Google Scholar 

  28. Coursey C, Frush DP, Yoshizumi T, et al. Pediatric chest MDCT using tube current modulation: effect on radiation dose with breast shielding. AJR Am J Roentgenol. 2008;190(1):W54–61.

    Article  PubMed  Google Scholar 

  29. Lee K, Lee W, Lee J, et al. Dose reduction and image quality assessment in MDCT using AEC (D-DOM & Z-DOM) and in-plane bismuth shielding. Radiat Prot Dosim. 2010;141(2):162–67.

    Article  CAS  Google Scholar 

  30. Chang K-H, Lee W, Choo D-M, et al. Dose reduction in CT using bismuth shielding: measurements and Monte Carlo simulations. Radiat Prot Dosim. 2009;138(4):382–88.

    Article  CAS  Google Scholar 

  31. Raissaki M, Perisinakis K, Damilakis J, et al. Eye-lens bismuth shielding in paediatric head CT: artefact evaluation and reduction. Pediatr Radiol. 2010;40(11):1748–54.

    Article  PubMed  Google Scholar 

  32. Gbelcová L, Nikodemova D, Horvathova M. Dose reduction using bismuth shielding during paediatric CT examinations in Slovakia. Radiat Prot Dosim. 2011;147(1–2):160–63.

    Article  CAS  Google Scholar 

  33. Wang J, Duan X, Christner JA, et al. Bismuth shielding, organ-based tube current modulation, and global reduction of tube current for dose reduction to the eye at head CT. Radiology. 2012;262(1):191–98.

    Article  PubMed  Google Scholar 

  34. Huggett J, Mukonoweshuro W, Loader R. A phantom-based evaluation of three commercially available patient organ shields for computed tomography X-ray examinations in diagnostic radiology. Radiat Prot Dosim. 2012;155(2):161–68.

    Article  CAS  Google Scholar 

  35. Ciarmatori A, Nocetti L, Mistretta G, et al. Reducing absorbed dose to eye lenses in head CT examinations: the effect of bismuth shielding. Australas Phys Eng Sci Med. 2016;39(2):583–89.

    Article  PubMed  Google Scholar 

  36. Lambert JW, Gould RG. Evaluation of a net dose-reducing organ-based tube current modulation technique: comparison with standard dose and bismuth-shielded acquisitions. AJR Am J Roentgenol. 2016;206(6):1233–40.

    Article  PubMed  Google Scholar 

  37. Aytugar E, Kose TE, Gumru B, et al. Are bismuth shields useful in dentomaxillofacial radiology practice for the protection of eyes and thyroid glands from ionizing radiation? Iran J Radiol. 2017. https://doi.org/10.5812/iranjradiol.40723.

    Article  Google Scholar 

  38. Matsutomo N, Fukunaga M, Onishi H, et al. Corneal dose reduction using a bismuth-coated latex shield over the eyes during brain SPECT/CT. J Nucl Med Technol. 2017;45(3):214–18.

    Article  PubMed  Google Scholar 

  39. Heaney D, Norvill C. A comparison of reduction in CT dose through the use of gantry angulations or bismuth shields. Australas Phys Eng Sci Med. 2006;29(2):172–78.

    Article  CAS  PubMed  Google Scholar 

  40. Hohl C, Wildberger J, Süß C, et al. Radiation dose reduction to breast and thyroid during MDCT: effectiveness of an in-plane bismuth shield. Acta Radiol. 2006;47(6):562–67.

    Article  CAS  PubMed  Google Scholar 

  41. Mendes M, Costa F, Figueira C, et al. Assessment of patient dose reduction by bismuth shielding in CT using measurements, GEANT4 and MCNPX simulations. Radiat Prot Dosim. 2015;165(1–4):175–81.

    Article  CAS  Google Scholar 

  42. Kim C-G. The development of bismuth shielding to protect the thyroid gland in radiations environment. Indian J Sci Technol. 2016;9:25.

    Google Scholar 

  43. Alonso TC, Mourão AP, Santana PC, et al. Assessment of breast absorbed doses during thoracic computed tomography scan to evaluate the effectiveness of bismuth shielding. Appl Radiat Isot. 2016;117:55–7.

    Article  CAS  PubMed  Google Scholar 

  44. Inkoom S, Papadakis AE, Raissaki M, et al. Paediatric neck multidetector computed tomography: the effect of bismuth shielding on thyroid dose and image quality. Radiat Prot Dosim. 2016;173(4):361–73.

    Google Scholar 

  45. Kim S, Yoshizumi TT, Frush DP, et al. Dosimetric characterisation of bismuth shields in CT: measurements and Monte Carlo simulations. Radiat Prot Dosim. 2009;133(2):105–10.

    Article  CAS  Google Scholar 

  46. Fricke BL, Donnelly LF, Frush DP, et al. In-plane bismuth breast shields for pediatric CT: effects on radiation dose and image quality using experimental and clinical data. AJR Am J Roentgenol. 2003;180(2):407–11.

    Article  PubMed  Google Scholar 

  47. Yilmaz MH, Yaşar D, Albayram S, et al. Coronary calcium scoring with MDCT: the radiation dose to the breast and the effectiveness of bismuth breast shield. Eur J Radiol. 2007;61(1):139–43.

    Article  PubMed  Google Scholar 

  48. Vollmar SV, Kalender WA. Reduction of dose to the female breast in thoracic CT: a comparison of standard-protocol, bismuth-shielded, partial and tube-current-modulated CT examinations. Eur Radiol. 2008;18(8):1674–82.

    Article  PubMed  Google Scholar 

  49. Abadi S, Mehrez H, Ursani A, et al. Direct quantification of breast dose during coronary CT angiography and evaluation of dose reduction strategies. AJR Am J Roentgenol. 2011;196(2):W152-W58.

    Article  Google Scholar 

  50. Einstein AJ, Elliston CD, Groves DW, et al. Effect of bismuth breast shielding on radiation dose and image quality in coronary CT angiography. J Nucl Cardiol. 2012;19(1):100–08.

    Article  PubMed  Google Scholar 

  51. Midgley S, Einsiedel P, Langenberg F, et al. Assessment of patient dose and image quality for cardiac CT with breast shields. Radiat Prot Dosim. 2012;151(3):463–68.

    Article  CAS  Google Scholar 

  52. Tappouni R, Mathers B. Scan quality and entrance skin dose in thoracic CT: a comparison between bismuth breast shield and posteriorly centered partial CT scans. ISRN radiology. 2012 (2013).

  53. Foley SJ, McEntee MF, Rainford LA. An evaluation of in-plane shields during thoracic CT. Radiat Prot Dosim. 2013;155(4):439–50.

    Article  CAS  Google Scholar 

  54. Kim YK, Sung YM, Choi JH, et al. Reduced radiation exposure of the female breast during low-dose chest CT using organ-based tube current modulation and a bismuth shield: comparison of image quality and radiation dose. AJR Am J Roentgenol. 2013;200(3):537–44.

    Article  PubMed  Google Scholar 

  55. Colletti PM, Micheli OA, Lee KH. To shield or not to shield: application of bismuth breast shields. AJR Am J Roentgenol. 2013;200(3):503–07.

    Article  PubMed  Google Scholar 

  56. Hulten E, Devine P, Welch T, et al. Comparison of coronary CT angiography image quality with and without breast shields. AJR Am J Roentgenol. 2013;200(3):529–36.

    Article  PubMed  Google Scholar 

  57. Servaes S, Zhu X. The effects of bismuth breast shields in conjunction with automatic tube current modulation in CT imaging. Pediatr Radiol. 2013;43(10):1287–94.

    Article  PubMed  Google Scholar 

  58. Karami V, Zabihzadeh M, Shams N, et al. Radioprotection to the Gonads in Pediatric Pelvic Radiography: Effectiveness of Developed Bismuth Shield. Int J Pediatr. 2017;5:6.

    Google Scholar 

  59. Mehnati P, Arash M, Akhlaghi P. Bismuth-silicon and bismuth-polyurethane composite shields for breast protection in chest computed tomography examinations. J Med Phys. 2018;43(1):61.

    PubMed  PubMed Central  Google Scholar 

  60. Kalra MK, Rizzo SM, Novelline RA. Reducing radiation dose in emergency computed tomography with automatic exposure control techniques. Emerg radiol. 2005;11(5):267–74.

    Article  PubMed  Google Scholar 

  61. McCollough CH, Wang J, Berland LL. Bismuth shields for CT dose reduction: do they help or hurt? JACR. 2011;8(12):878–79.

  62. Geleijns J, Wang J, McCollough C. The use of breast shielding for dose reduction in pediatric CT: arguments against the proposition. Pediatr Radiol. 2010;40(11):1744–47.

    Article  PubMed  Google Scholar 

  63. Berger M. XCOM: photon cross sections database. http://www.nist.gov/pml/data/xcom/index.cfm. 2010.

  64. Kim S, Frush DP, Yoshizumi TT. Bismuth shielding in CT: support for use in children. Pediatr Radiol. 2010;40(11):1739–43.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the office of the vice president of research of Tabriz University of Medical Sciences, Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Malekzadeh.

Ethics declarations

Conflict of interest

The author declares that she has no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehnati, P., Malekzadeh, R. & Sooteh, M.Y. Use of bismuth shield for protection of superficial radiosensitive organs in patients undergoing computed tomography: a literature review and meta-analysis. Radiol Phys Technol 12, 6–25 (2019). https://doi.org/10.1007/s12194-019-00500-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-019-00500-2

Keywords

Navigation