Skip to main content
Log in

Reducing radiation dose in emergency computed tomography with automatic exposure control techniques

  • Review Article
  • Published:
Emergency Radiology Aims and scope Submit manuscript

Abstract

Computed tomography (CT) scanning is being increasingly used for evaluation of trauma, which most commonly involves younger individuals. As younger patients are at higher risk for radiation-induced cancer compared to older patients, radiation dose reduction is an important issue in emergency CT scanning. With automatic exposure control techniques, users select a desired image quality and the system adapts tube current to obtain the desired image quality with greater radiation dose efficiency. These techniques can help in reducing radiation dose by 10–60% in most instances. This review article presents a comprehensive description of fundamentals, clinical applications and radiation dose benefits of automatic exposure control in emergency CT scanning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parsons PA (2003) Energy, stress and the invalid linear no-threshold premise: a generalization illustrated by ionizing radiation. Biogerontology 4:227–231

    Article  PubMed  Google Scholar 

  2. Vaiserman AM, Litoshenko AI, Kvitnitskaia-Ryzhova TI, Koshel NM, Mozzhukhina TG et al. (2003) Molecular and cellular aspects of radiation hormesis in Drosophila melanogaster. Tsitol Genet 37:41–48

    CAS  Google Scholar 

  3. Prekeges JL (2003) Radiation hormesis, or, could all that radiation be good for us? Nucl Med Technol 31:11–17

    Google Scholar 

  4. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB et al. (2003) Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA 100:13761–13766

    Article  CAS  PubMed  Google Scholar 

  5. Brenner D, Elliston C, Hall E, Berdon W (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176:289–296

    CAS  PubMed  Google Scholar 

  6. Pierce DA, Preston DL (2000) Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res 154:178–186

    CAS  PubMed  Google Scholar 

  7. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA et al. (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628

    PubMed  Google Scholar 

  8. Horan JM, Mallonee S (2003) Injury surveillance. Epidemiol Rev 25:24–42

    Article  PubMed  Google Scholar 

  9. McCaig LF, Burt CW (2004) National Hospital Ambulatory Medical Care Survey: 2002 emergency department summary. Adv Data 340:1–34

    PubMed  Google Scholar 

  10. Kalra MK, Prasad S, Saini S, Blake MA, Varghese J, Halpern EF et al. (2002) Clinical comparison of standard-dose and 50% reduced-dose abdominal CT: effect on image quality. AJR Am J Roentgenol 179:1101–1106

    PubMed  Google Scholar 

  11. Kalra MK, Maher MM, Prasad SR, Hayat MS, Blake MA, Varghese J et al. (2003) Correlation of patient weight and cross-sectional dimensions with subjective image quality at standard dose abdominal CT. Korean J Radiol 4:234–238

    PubMed  Google Scholar 

  12. Frush DP (2002) Pediatric CT: practical approach to diminish the radiation dose. Pediatr Radiol 32:714–717

    Article  PubMed  Google Scholar 

  13. Prasad SR, Wittram C, Shepard JA, McLoud T, Rhea J (2002) Standard-dose and 50%-reduced-dose chest CT: comparing the effect on image quality. AJR Am J Roentgenol 179:461–465

    PubMed  Google Scholar 

  14. Hagtvedt T, Aalokken TM, Notthellen J, Kolbenstvedt A (2003) A new low-dose CT examination compared with standard-dose CT in the diagnosis of acute sinusitis. Eur Radiol 13:976–980

    CAS  PubMed  Google Scholar 

  15. Cohnen M, Cohnen B, Koch JA, Malms J, Teubert G, Ewen K (1998) Possibilities for dose reduction in coronal spiral CT of the mid-face area. Aktuelle Radiol 8:34–39

    CAS  PubMed  Google Scholar 

  16. Blandino A, Minutoli F, Scribano E, Vinci S, Magno C, Pergolizzi S et al. (2004) Combined magnetic resonance urography and targeted helical CT in patients with renal colic: a new approach to reduce delivered dose. J Magn Reson Imaging 20:264–271

    Article  PubMed  Google Scholar 

  17. Tack D, Sourtzis S, Delpierre I, de Maertelaer V, Gevenois PA (2003) Low-dose unenhanced multidetector CT of patients with suspected renal colic. AJR Am J Roentgenol 180:305–311

    PubMed  Google Scholar 

  18. Keyzer C, Tack D, de Maertelaer V, Bohy P, Gevenois PA, Van Gansbeke D (2004) Acute appendicitis: comparison of low-dose and standard-dose unenhanced multi-detector row CT. Radiology 232:164–172

    PubMed  Google Scholar 

  19. Ptak T, Rhea JT, Novelline RA (2003) Radiation dose is reduced with a single-pass whole-body multi-detector row CT trauma protocol compared with a conventional segmented method: initial experience. Radiology 229:902–905

    PubMed  Google Scholar 

  20. Kalra MK, Maher MM, Toth TL, Schmidt B, Westerman B, Morgan HP et al. (2004) Techniques and applications of automatic tube current modulation. Radiology (in press)

  21. Hamberg LM, Rhea JT, Hunter GJ, Thrall JH (2003) Multi-detector row CT: radiation dose characteristics. Radiology 226:762–772

    PubMed  Google Scholar 

  22. Hollingsworth C, Frush DP, Cross M, Lucaya J (2003) Helical CT of the body: a survey of techniques used for pediatric patients. AJR Am J Roentgenol 180:401–406

    PubMed  Google Scholar 

  23. Kalender WA, Wolf H, Suess C, Gies M, Greess H, Bautz WA (1999) Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur Radiol 9:323–328

    Article  CAS  PubMed  Google Scholar 

  24. Greess H, Wolf H, Baum U, Lell M, Pirkl M, Kalender W, Bautz W (2000) Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol 10:391–394

    Article  CAS  PubMed  Google Scholar 

  25. Greess H, Baum U, Wolf H, Lell M, Nomayr A, Schmidt B et al. (2001) Dose reduction in spiral-CT: detection of pulmonary coin lesions with and without anatomically adjusted modulation of tube current. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 173:466–470

    Article  CAS  PubMed  Google Scholar 

  26. Mastora I, Remy-Jardin M, Suess C, Scherf C, Guillot JP, Remy J (2001) Dose reduction in spiral CT angiography of thoracic outlet syndrome by anatomically adapted tube current modulation. Eur Radiol 11:590–596

    Article  CAS  PubMed  Google Scholar 

  27. Greess H, Nömayr A, Wolf H et al. (2002) Dose reduction in CT examination of children by an attenuation-based on-line modulation of tube current (CARE Dose). Eur Radiol 12:1571–1576

    Article  PubMed  Google Scholar 

  28. Kalra MK, Maher MM, Toth TL, Kamath RS, Halpern EF, Saini S (2004) Radiation from “extra” images acquired with abdominal and/or pelvic CT: effect of automatic tube current modulation. Radiology 232:409–414

    PubMed  Google Scholar 

  29. Kalra MK, Maher MM, Toth TL, Kamath RS, Halpern EF, Saini S (2004) Comparison of Z-axis automatic tube current modulation technique with fixed tube current CT scanning of abdomen and pelvis. Radiology 232:347–353

    PubMed  Google Scholar 

  30. Kalra MK, Maher MM, Kamath RS, Horiuchi T, Toth TL, Halpern EF et al. (2004) Sixteen-detector row CT of abdomen and pelvis: study for optimization of z-axis modulation technique performed in 153 patients. Radiology 233:241–249

    PubMed  Google Scholar 

  31. Kalra MK, Rizzo S, Maher MM, Toth TL, Halpern EF, Shepard J et al. (2004) Automatic tube current modulation in chest CT scanning: protocol optimization and radiation dose reduction. Radiology (in press)

    Google Scholar 

  32. Kalra MK, Maher MM, D’Souza R, Rizzo S, Halpern EF, Blake MA et al. (2004) CT detection of urinary tract stones using z-axis automatic tube current modulation technique with low radiation dose: phantom and clinical studies. Radiology (in press)

  33. Horiuchi T (2002) Study on 3D modulation Auto mA. Jpn Soc Radiol Tech (Abstract) 78:166

    Google Scholar 

  34. Greess H, Wolf H, Suess C, Lutze J, Kalender WA, Bautz W (2002) Automatic exposure control to reduce dose in subsecond multislice spiral CT: phantom measurements and clinical results. Radiology 225:593

    Google Scholar 

  35. Suess C, Chen XY (2002) Dose optimization in pediatric CT: current technology and future innovations. Pediatr Radiol 32:729–734

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Novelline.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalra, M.K., Rizzo, S.M.R. & Novelline, R.A. Reducing radiation dose in emergency computed tomography with automatic exposure control techniques. Emerg Radiol 11, 267–274 (2005). https://doi.org/10.1007/s10140-004-0395-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10140-004-0395-7

Keywords

Navigation