Skip to main content
Log in

A cannibalistic eco-epidemiological model with disease in predator population

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this present article, we propose and analyze a cannibalistic predator–prey model with disease in the predator population. We consider two important factors for the dynamics of predator population. The first one is governed through cannibalistic interaction, and the second one is governed through the disease in the predator population via cannibalism. The local stability analysis of the model system around the biologically feasible equilibria are investigated. We perform global dynamics of the model using Lyapunov functions. We analyze and compare the community structure of the system in terms of ecological and disease basic reproduction numbers. The existence of Hopf bifurcation around the interior steady state is investigated. We also derive the sufficient conditions for the permanence and impermanence of the system. The study reveals that the cannibalism acts as a self-regulatory mechanism and controls the disease transmission among the predators by stabilizing the predator–prey oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Anderson, R.M., May, R.M.: The invasion, persistence and spread of infectious diseases within animal and plant communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 533–570 (1986)

    Article  Google Scholar 

  2. Biswas, S., Samanta, S., Chattopadhyay, J.: Cannibalistic predator–prey model with disease in predator—a delay model. Int. J. Bif. Chaos 25(10), 1550130 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biswas, S., Chatterjee, S., Chattopadhyay, J.: Cannibalism may control disease in predator population: result drawn from a model based study. Math. Methods Appl. Sci. 38, 2272–2290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biswas, S., Samanta, S., Chattopadhyay, J.: A model based theoretical study on cannibalistic prey–predator system with disease in both populations. Differ. Equ. Dyn. Syst. 23(3), 327–370 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biswas, S., Samanta, S., Khan, Q.J., Chattopadhyay, J.: Effect of multiple delays on the dynamics of cannibalistic prey–predator system with disease in both populations. Int. J. Biomath. (2016). doi:10.1142/S1793524517500498

  6. Boots, M.: Cannibalism and the stage-dependent transmission of a viral pathogen of the Indian meal moth, Plodia interpunctella. Ecol. Entomol. 23, 118–122 (1998)

    Article  Google Scholar 

  7. Butcher, J.C.: Coefficients for the study of Runge–Kutta integration processes. J. Aust. Math. Soc. 3(02), 185–201 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chapman, J.W., Williams, T., Escribano, A., Caballero, P., Cave, R.D., Goulson, D.: Fitness consequence of cannibalism in the fall armyworm, Spodoptera frugiperda. Behav. Ecol. 10, 298–303 (1998)

    Article  Google Scholar 

  9. Chapman, J.W., Williams, T., Escribano, A., Caballero, P., Cave, R.D., Goulson, D.: Age-related cannibalism and horizontal transmission of a nuclear polyhedrosis virus in larval Spodoptera frugiperda. Ecol. Entomol. 24, 268–275 (1999)

    Article  Google Scholar 

  10. Chattopadhyay, J., Arino, O.: A predator–prey model with disease in the prey. Nonlinear Anal. 36, 747–766 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cushing, J.M.: A simple model of cannibalism. Math. Biosci. 107, 47–71 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Das, K., Samanta, S., Biswas, B., Chottapadhyay, J.: Occurrence of chaos and its possible control in a predator–prey model with disease in the predator population. J. Ecol. 108, 306–319 (2014)

    Google Scholar 

  13. Das, K.P., Samanta, S., Biswas, S., Alshomrani, A.S., Chattopadhyay, J.: A strategy for a disease-free system—an eco-epidemiological model based study. J. Appl. Math. Comput. (2016). doi:10.1007/s12190-016-1050-7

  14. Desharnais, R.A., Liu, L.: Stable demographic limit cycles in laboratory populations of Tribolium castaneum. J. Anim. Ecol. 56, 885–906 (1987)

    Article  Google Scholar 

  15. Diekmann, O., Nibet, R.M., Gurney, W.S.C., Van den Bosch, F.: Simple mathematical models for cannibalism: a critique and a new approach. Math. Biosci. 78, 21–46 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elgar, M.A., Crespi, B.J.: Cannibalism: Ecology and Evolution Among Diverse Taxa. Oxford University Press, New York (1992)

    Google Scholar 

  17. Evirgen, F., Özdemir, N.: Multistage adomian decomposition method for solving NLP problems over a nonlinear fractional dynamical system. J. Comput. Nonlinear Dyn. 6(2), 021003 (2011)

    Article  Google Scholar 

  18. Fatoorehchi, H., Abolghasemi, H., Zarghami, R.: Analytical approximate solutions for a general nonlinear resistor-nonlinear capacitor circuit model. Appl. Math. Model. 39(19), 6021–6031 (2015)

    Article  MathSciNet  Google Scholar 

  19. Fatoorehchi, H., Abolghasemi, H., Zarghami, R., Rach, R.: Feedback control strategies for a cerium-catalyzed Belousov–Zhabotinsky chemical reaction system. Can. J. Chem. Eng. 93(7), 1212–1221 (2015)

    Article  MATH  Google Scholar 

  20. Fatoorehchi, H., Zarghami, R., Abolghasemi, H., Rach, R.: Chaos control in the cerium-catalyzed Belousov–Zhabotinsky reaction using recurrence quantification analysis measures. Chaos Solitons Fract. 76, 121–129 (2015)

    Article  MATH  Google Scholar 

  21. Fox, L.R.: Cannibalism in natural populations. Annu. Rev. Ecol. Syst. 6, 87–106 (1975)

    Article  Google Scholar 

  22. Fraser, C.A., Owens, L.: Spawner-isolated mortality virus from Australian Penaeusmonodon. Dis. Aquat. Org. 27, 141–148 (1996)

    Article  Google Scholar 

  23. Godfray, H.C.J.: Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, Princeton (1994)

    Google Scholar 

  24. Greenhalgh, D., Haque, M.: A predator–prey model with disease in the prey species only. Math. Methods Appl. Sci. 30, 911–929 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guthrie, D.M., Tindall, A.R.: The Biology of the Cockroach. St. Martins Press, New York (1968)

    Google Scholar 

  26. Hadeler, K.P., Freedman, H.I.: Predator–prey populations with parasitic infection. J. Math. Biol. 27, 609–631 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Haque, M., Venturino, E.: The role of transmissible diseases in the Holling–Tanner predator–prey model. Theor. Pop. Biol. 70, 273–288 (2006)

    Article  MATH  Google Scholar 

  28. Haque, M., Venturino, E.: An ecoepidemiological model with disease in predator: the ratio-dependent case. Math. Methods Appl. Sci. 30, 1791–1809 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Haque, M.: A predator–prey model with disease in the predator species only. Nonlinear Anal. Real World Appl. 11, 2224–2236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hastings, A.: Cycles in cannibalistic egg–larval interactions. J. Math. Biol. 24, 651–666 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hethcote, H.W., Wang, W., Han, L., Ma, Z.: A predator–prey model with infected prey. Theor. Popul. Biol. 665(3), 249–268 (2004)

    Google Scholar 

  32. Hilker, F.M., Schmitz, K.: Disease-induced stabilization of predator–prey oscillations. J. Theor. Biol. 255, 299–306 (2008)

    Article  Google Scholar 

  33. Hofbauer, J.: Saturated equilibria, permanence and stability for ecological systems. In: Groos, L., Hallam, T., Levin, S. (eds.) Proceedings of the 2nd Autumn Course on Mathematical Ecology. World Scientific, Trieste (1986)

    Google Scholar 

  34. Holmes, N.D., Nelson, W.A., Peterson, L.K., Farstad, C.W.: Causes of variations in effectiveness of Bracon cephi (Gahan) (Hymenoptera: Braconidae) as a parasite of the wheat stem sawfly. Can. Entomol. 95, 113–126 (1963)

    Article  Google Scholar 

  35. Hutson, V., Law, R.: Permanent coexistence in general models of three interacting species. J. Math. Biol. 21(3), 285–298 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ibáñez, C.M., Chong, J.: Feeding ecology of Enteroctopus megalocyathus (Gould 1852) (Cephalopoda: Octopodidae). J. Mar. Biol. Assoc. UK 88, 793–798 (2008)

    Google Scholar 

  37. Ibanez, C.M., Keyal, F.: Cannibalism in cephalopods. Rev. Fish Biol. Fish. (2009). doi:10.1007/s11160-009-9129-y

  38. Jancovich, J.K., Daviodson, E.W., Morado, J.F., Jacobs, B.L., Colling, J.P.: Isolation of a lethal virus from the endangered tiger salamander Ambystoma tigrinum stebbinsi. Dis. Aquatic Org. 31, 161–167 (1997)

    Article  Google Scholar 

  39. Kohlmeier, C., Ebenhoh, W.: The stabilizing role of cannibalism in a predator–prey system. Bull. Math. Biol. 57, 401–411 (1995)

    Article  MATH  Google Scholar 

  40. Magnússon, K.G.: Destabilizing effect of cannibalism on a structured predator–prey system. Math. Biosci. 155, 61–75 (1999)

    Article  MATH  Google Scholar 

  41. Richardson, M.L., Mitchell, R.F., Reagel, P.F., Hanks, L.M.: Causes and consequences of cannibalism in noncarnivorous insects. Annu. Rev. Entomol. 55, 39–53 (2010)

    Article  Google Scholar 

  42. Pfennig, D.W., Loeb, M.L.G., Collins, J.P.: Pathogens as a factor limiting the spread of cannibalism in tiger salamanders. Oecologia 88, 161–166 (1991)

    Article  Google Scholar 

  43. Pielou, E.C.: Introduction to Mathematical Ecology. Wiley-Interscience, New York (1969)

    MATH  Google Scholar 

  44. Polis, G.A.: The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12, 225–251 (1981)

    Article  Google Scholar 

  45. Ré, M.E., Gomez-Simes, E.: Hábitos alimentarios del pulpo (Octopus tehuelchus). I. Analisis cuali-cuantitativos de la dieta en el intermareal de Puerto Lobos, Golfo San Mat́ýas (Argentina). Frente Maŕýtimo 11: 119–128 (1992)

  46. Root, R.B., Chaplin, S.J.: The life-styles of tropical milkweed bugs, Oncopeltus (Hemiptera: Lygaeidae), utilizing the same hosts. Ecology 57, 132–140 (1976)

    Article  Google Scholar 

  47. Root, R.B.: The life of a Californian population of the facultative milkweed bug Lygaeus kalmii (Heteroptera: Lygaeidae). Proc. Entomol. Soc. Wash. 88, 201–214 (1986)

    Google Scholar 

  48. Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predatorprey interactions. Am. Nat. 97, 209–223 (1963)

    Article  Google Scholar 

  49. Rudolf, V.H.W., Antonovics, J.: Disease transmission by cannibalism: rare event or common occurrence? Proc. R. Soc. B 274, 1205–1210 (2007)

    Article  Google Scholar 

  50. Saifuddin, M., Biswas, S., Samanta, S., Sarkar, S., Chattopadhyay, J.: Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator. Chaos Solitons Fract. 91, 270–285 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Samanta, S., Dhar, R., Pal, J., Chattopadhyay, J.: Effect of enrichment on plankton dynamics where phytoplankton can be infected from free viruses. Nonlinear Stud. 20(2), 225–238 (2013)

    MathSciNet  MATH  Google Scholar 

  52. Samanta, S., Mandal, A.K., Kundu, K., Chattopadhyay, J.: Control of disease in prey population by supplying alternative food to predator. J. Biol. Syst. 22(04), 677–690 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Spann, K.M., Cowley, J.A., Walker, P.J., Lester, R.J.G.: A yellow head-like virus, from Penaeusmonodon cultured in Australia. Dis. Aquat. Org. 31, 169–179 (1997)

    Article  Google Scholar 

  54. Van den Bosch, F., Gabriel, W.: Cannibalism in an age-structured predator–prey system. Bull. Math. Biol. 59, 551–567 (1997)

    Article  MATH  Google Scholar 

  55. Venturino, E.: The influence of diseases on Lotka–Volterra systems. Rocky Mt. J. Math. 24, 381–402 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  56. Venturino, E.: Epidemics in predator–prey models: disease in the prey. In: Arino, O., Axelrod, D., Kimmel, M., Langlais, M. (eds.) Mathematical Population Dynamics: Analysis of Heterogeneity, vol. 1: Theory of Epidemics, pp. 381–393. Wuerz Publishing, Winnipeg (1995)

    Google Scholar 

  57. Venturino, E.: Epidemics in predator–prey models: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185–205 (2002)

    Article  MATH  Google Scholar 

  58. Weaver, D.K., Nansen, C., Runyon, J.B., Sing, S.E., Morrill, W.L.: Spatial distributions of Cephus cinctus Norton (Hymenoptera: Cephidae) and its braconid parasitoids in Montana wheat fields. Biol. Control 34, 1–11 (2005)

    Article  Google Scholar 

  59. Wood, J.B., Kenchington, E., O’Dor, R.K.: Reproduction and embryonic development time of Bathypolypus articus, a deep-sea octopod (Cephalopoda: Octopoda). Malacologia 39, 11–19 (1998)

    Google Scholar 

  60. Yang, X., Chen, L.S.: Permanence and positive periodic solution for the single species nonautonomous delay diffusive model. Comp. Math. Appl. 32, 109–116 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  61. Ziemba, R.E., Collins, J.P.: Development size structure in tiger salamanders: the role of intraspecific interference. Oecologia 120, 524–529 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their careful reading and valuable comments on the previous version of the paper which help us a lot to improve the manuscript. The research work of Sudip Samanta is supported by NBHM postdoctoral fellowship. Santosh Biswas’s research work is supported by DST-PURSE project (Phase II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydev Chattopadhyay.

Appendices

Appendix 1

  1. (a)

    The Jacobian matrix around the interior equilibrium point \(B_{*}(x_{*}, y_{*}, z_{*})\) is given by

    $$\begin{aligned} J^{*}= \left[ \begin{array}{ccc} V_{11} &{} V_{12} &{} V_{13} \\ V_{21} &{} V_{22} &{} V_{23} \\ V_{31} &{} V_{32} &{} V_{33} \\ \end{array} \right] , \end{aligned}$$

    where \(V_{11}=-\frac{rx_{*}}{k}+\frac{(\alpha _{1}y_{*}+\alpha _{2} z_{*})x_{*}}{(\gamma +x_{*})^{2}}, V_{12}=-\frac{\alpha _{1}x_{*}}{\gamma +x_{*}}, V_{13}=-\frac{\alpha _{2}x_{*}}{\gamma +x_{*}}, V_{21}=\frac{\alpha (\alpha _{1}y_{*}+\alpha _{2} z_{*})}{\gamma +x_{*}} -\frac{\alpha (\alpha _{1}y_{*}+\alpha _{2} z_{*})x_{*}}{(\gamma +x_{*})^{2}}, V_{22}=\frac{\alpha \alpha _{1}x_{*}}{\gamma +x_{*}}\,+\,c_{1}\sigma (2\beta y_{*}+z_{*})\,+\,c_{2}\sigma \beta z_{*} -\sigma (2\beta y_{*}+z_{*})-\sigma l f z_{*} - \lambda z_{*}-d, V_{23}=\frac{\alpha \alpha _{2}x_{*}}{\gamma +x_{*}}+c_{1}\sigma y_{*}+c_{2}\sigma (\beta y_{*}+2z_{*})-\sigma y_{*}-\sigma l f y_{*} - \lambda y_{*}, V_{31}=0, V_{32}=\lambda z_{*}+ \sigma l f z_{*}-\sigma \beta z_{*}, V_{33}=-\sigma z_{*}\). The characteristic equation for \(J^{*}\) is

    $$\begin{aligned} \mu ^{3}+\varTheta _{1} \mu ^{2}+\varTheta _{2} \mu + \varTheta _{3}=0, \end{aligned}$$
    (7.1)

    where \(\varTheta _{1}=-(V_{11} +V_{22}+V_{33}), \varTheta _{2}=V_{11}V_{22}+V_{11}V_{33}+ V_{22} V_{33}- V_{12} V_{21}- V_{23} V_{32}, \varTheta _{3}=-det(J^{*})=V_{11} V_{23} V_{32} + V_{12} V_{21} V_{33} - V_{13} V_{21} V_{32} - V_{11} V_{22} V_{33}\). According to the Routh–Hurwitz criteria the interior equilibrium point \(B_{*}\) is stable if the conditions stated in the theorem hold.

  2. (b)

    Let \(\varSigma \) be a positive definite Lyapunov function about \(B_{*}(x_{*}, y_{*}, z_{*})\), given by

    $$\begin{aligned} \varSigma =\varSigma _{x}+\varSigma _{y}+\varSigma _{z}, \end{aligned}$$

where \(\varSigma _{x}=x-x_{*}-x_{*} ln\frac{x}{x_{*}}, \varSigma _{y}=y-y_{*}-y_{*} ln\frac{y}{y_{*}}, \varSigma _{z}=z-z_{*}-z_{*} ln\frac{z}{z_{*}}\).

Now, computing the time derivative of \(\varSigma _{x}\) along the solution of (2.4), we obtain

$$\begin{aligned} {\dot{\varSigma }}_{x}= & {} (x-x_{*})\left[ r\left( 1-\frac{x}{k}\right) -\frac{\alpha _{1}y+\alpha _{2} z}{\gamma +x}\right] \\= & {} \left. (x-x_{*})\left[ -\frac{r(x-x_{*})}{k}\right) -\alpha _{1}\left( \frac{y}{\gamma +x}-\frac{y_{*}}{\gamma +x_{*}}\right) -\alpha _{2}\left( \frac{z}{\gamma +x}-\frac{z_{*}}{\gamma +x_{*}}\right) \right] \\= & {} -\frac{r}{k}(x-x_{*})^{2}-\frac{\alpha _{1}}{(\gamma +x)}(x-x_{*})(y-y_{*})-\frac{\alpha _{2}}{(\gamma +x)}(x-x_{*})(z-z_{*})\\&+\,\frac{(\alpha _{1} y_{*}+ \alpha _{2}z_{*})}{(\gamma +x)(\gamma +x_{*})}(x-x_{*})^{2}. \end{aligned}$$

Similarly,

$$\begin{aligned} {\dot{\varSigma }}_{y}= & {} (y-y_{*})\left[ \frac{\alpha (\alpha _{1}y+\alpha _{2} z)x}{(\gamma +x)y} +c_{1}\sigma (\beta y+z)\right. \\&\left. +\,c_{2}\sigma \left( \beta +\frac{z}{y}\right) z-\sigma (\beta y+z)-\sigma l f z - \lambda z-d\right] \\= & {} (y-y_{*})\left[ \alpha \alpha _{1} \left( \frac{x}{\gamma +x}-\frac{x_{*}}{\gamma +x_{*}}\right) + \alpha \alpha _{2} \left\{ \frac{xz}{(\gamma +x)y}-\frac{x_{*}z_{*}}{(\gamma +x_{*})y_{*}}\right\} \right. \\&-\,\sigma (1-c_{1})\beta (y-y_{*})- \{\sigma (1-c_{1})-c_{2} \sigma \beta + \sigma lf +\lambda \} (z-z_{*})\\&\left. +\,c_{2} \sigma \left( \frac{z^{2}}{y}- \frac{z^{*^{2}}}{y_{*}}\right) \right] \\= & {} \left\{ \frac{\alpha \alpha _{1} \gamma }{(\gamma +x)(\gamma +x_{*})}+ \frac{\alpha \alpha _{2} \gamma z_{*}}{(\gamma +x)(\gamma +x_{*})y} \right\} (x-x_{*})(y-y_{*})\\&+\,\left[ c_{2} \sigma \frac{z}{y}+c_{2} \sigma \frac{z_{*}}{y}-\{\sigma (1-c_{1})-c_{2} \sigma \beta + \sigma lf +\lambda \}\right. \\&\left. +\,\frac{\alpha \alpha _{2} x}{(\gamma +x)y}\right] (y-y_{*})(z-z_{*})\\&-\,\left\{ \sigma (1-c_{1})\beta +\frac{c_{2} \sigma z^{*^{2}}}{y_{*}y}+ \frac{\alpha \alpha _{2} x_{*}z_{*}}{(\gamma +x_{*})y_{*}y} \right\} (y-y_{*})^{2},\\ {\dot{\varSigma }}_{z}= & {} (z-z_{*})[\lambda y+ \sigma l f y-\sigma (\beta y+z) -(d+e) ]\\= & {} (\lambda + \sigma l f -\sigma \beta )(y-y_{*})(z-z_{*})-\sigma (z-z_{*})^{2}.\\ \end{aligned}$$

Adding these quantities and after some algebraic calculations, we can obtain

$$\begin{aligned} {\dot{\varSigma }}= & {} -\left[ \{\frac{r}{k}-\frac{(\alpha _{1} y_{*}+ \alpha _{2}z_{*})}{(\gamma +x)(\gamma +x_{*})} \} (x-x_{*})^{2}\right. \\&+\,\left\{ \sigma (1-c_{1})\beta +\frac{c_{2} \sigma z^{*^{2}}}{y_{*}y}+ \frac{\alpha \alpha _{2} x_{*}z_{*}}{(\gamma +x_{*})y_{*}y} \right\} (y-y_{*})^{2}+\sigma (z-z_{*})^{2} \\&+\,\left\{ \frac{\alpha _{1}}{(\gamma +x)}-\frac{\alpha \alpha _{1} \gamma }{(\gamma +x)(\gamma +x_{*})}- \frac{\alpha \alpha _{2} \gamma z_{*}}{(\gamma +x)(\gamma +x_{*})y} \right\} \\&\times (x-x_{*})(y-y_{*})\\&+\,\left\{ \sigma (1-c_{1})+\sigma \beta (1-c_{2})-c_{2} \sigma \frac{z}{y}-c_{2} \sigma \frac{z_{*}}{y}- \frac{\alpha \alpha _{2} x}{(\gamma +x)y}\right\} (y-y_{*})(z-z_{*})\\&+\,\left. \frac{\alpha _{2}}{(\gamma +x)}(x-x_{*})(z-z_{*}) \right] \end{aligned}$$

The above expression can be written in the form \(-\mathbf {w}^{T}\varOmega \mathbf {w}\), where \(\mathbf {w}=(x-x_{*}, y-y_{*}, z-z_{*})\) and \(\varOmega \) is the symmetric matrix given by

$$\begin{aligned} \varOmega =\left( \begin{array}{ccc} \varOmega _{11}&{} \varOmega _{12} &{} \varOmega _{13} \\ \varOmega _{12} &{} \varOmega _{22} &{}\varOmega _{23} \\ \varOmega _{13} &{} \varOmega _{23} &{} \varOmega _{33} \\ \end{array} \right) , \end{aligned}$$

with \(\varOmega _{11}= \frac{r}{k}-\frac{(\alpha _{1} y_{*}+ \alpha _{2}z_{*})}{(\gamma +x)(\gamma +x_{*})}, \varOmega _{12}= \frac{1}{2} \{ \frac{\alpha _{1}}{(\gamma +x)}-\frac{\alpha \alpha _{1} \gamma }{(\gamma +x)(\gamma +x_{*})}- \frac{\alpha \alpha _{2} \gamma z_{*}}{(\gamma +x)(\gamma +x_{*})y} \}, \varOmega _{13}= \frac{1}{2} \frac{\alpha _{2}}{(\gamma +x)}, \varOmega _{22}=\sigma (1-c_{1})\beta +\frac{c_{2} \sigma z^{*^{2}}}{y_{*}y}+ \frac{\alpha \alpha _{2} x_{*}z_{*}}{(\gamma +x_{*})y_{*}y}, \varOmega _{23}=\frac{1}{2} \{ \sigma (1-c_{1})+\sigma \beta (1-c_{2})-c_{2} \sigma \frac{z}{y}-c_{2} \sigma \frac{z_{*}}{y}- \frac{\alpha \alpha _{2} x}{(\gamma +x)y}\}, \varOmega _{33}=\sigma \).

Thus, \({\dot{\varSigma }}\) is negative definite if the symmetric matrix \(\varOmega \) is positive definite. The matrix \(\varOmega \) is positive definite, if all the principal minors \({\mathbb {P}}_{1}= \varOmega _{11}, {\mathbb {P}}_{2}= \varOmega _{11} \varOmega _{22}-\varOmega _{12}^{2}, {\mathbb {P}}_{3}=\varOmega _{11}\varOmega _{22}\varOmega _{33}+2\varOmega _{12}\varOmega _{13}\varOmega _{23}-\varOmega _{11}\varOmega _{23}^{2}-\varOmega _{22}\varOmega _{13}^{2}-\varOmega _{33}\varOmega _{12}^{2}\) of \(\varOmega \) are positive, i.e.,

(i):

\({\mathbb {P}}_{1}=\frac{r}{k}-\frac{(\alpha _{1} y_{*}+ \alpha _{2}z_{*})}{(\gamma +x)(\gamma +x_{*})} >0\),

(ii):

\({\mathbb {P}}_{2}=[\frac{r}{k}-\frac{(\alpha _{1} y_{*}+ \alpha _{2}z_{*})}{(\gamma +x)(\gamma +x_{*})}] [ \sigma (1-c_{1})\beta +\frac{c_{2} \sigma z^{*^{2}}}{y_{*}y}+ \frac{\alpha \alpha _{2} x_{*}z_{*}}{(\gamma +x_{*})y_{*}y}]-[\frac{1}{2} \{\frac{\alpha _{1}}{(\gamma +x)}-\frac{\alpha \alpha _{1} \gamma }{(\gamma +x)(\gamma +x_{*})}- \frac{\alpha \alpha _{2} \gamma z_{*}}{(\gamma +x)(\gamma +x_{*})y} \}]^{2} >0\),

(iii):

\({\mathbb {P}}_{3}=\varOmega _{33}(\varOmega _{11}\varOmega _{22}-\varOmega _{12}^{2})+\varOmega _{23}(\varOmega _{12}\varOmega _{13}-\varOmega _{11}\varOmega _{23})+\varOmega _{13}(\varOmega _{12}\varOmega _{23}-\varOmega _{22}\varOmega _{13})>0\).

For \({\mathbb {P}}_{1}\), we have by (4.3) \({\mathbb {P}}_{1}(x)=\frac{r}{k}-\frac{(\alpha _{1} y_{*}+ \alpha _{2}z_{*})}{(\gamma +x)(\gamma +x_{*})}>{\mathbb {P}}_{1}(0)=\frac{r}{k}-\frac{(\alpha _{1} y_{*}+ \alpha _{2}z_{*})}{\gamma (\gamma +x_{*})}>0\) since \(\dot{{\mathbb {P}}_{1}}(x)=\frac{(\alpha _{1} y_{*}+ \alpha _{2}z_{*})}{(\gamma +x)^{2}(\gamma +x_{*})}>0\).

For \({\mathbb {P}}_{2}\), using (4.3) and (4.4), we have

$$\begin{aligned} {\mathbb {P}}_{2}= & {} \left[ \frac{r}{k}-\frac{\alpha _{1} y_{*}+ \alpha _{2}z_{*}}{(\gamma +x)(\gamma +x_{*})}\right] \left[ \sigma (1-c_{1})\beta +\frac{c_{2} \sigma z^{*^{2}}}{y_{*}y}+ \frac{\alpha \alpha _{2} x_{*}z_{*}}{(\gamma +x_{*})y_{*}y}\right] \\&-\,\left[ \frac{1}{2} \left\{ \frac{\alpha _{1}}{(\gamma +x)}-\frac{\alpha \alpha _{1} \gamma }{(\gamma +x)(\gamma +x_{*})}- \frac{\alpha \alpha _{2} \gamma z_{*}}{(\gamma +x)(\gamma +x_{*})y} \right\} \right] ^{2} \\= & {} \Bigl [\Bigl \{\Bigl (\frac{r}{k}-\frac{\alpha _{1} y_{*}+ \alpha _{2}z_{*}}{(\gamma +x)(\gamma +x_{*})} \Bigl ) \sigma (1-c_{1})\beta -\frac{1}{4}\left( \frac{\alpha _{1}}{\gamma +x}\right) ^{2} \Bigr \}\\&+\,\Bigl \{\frac{r}{k}-\frac{\alpha _{1} y_{*}+ \alpha _{2}z_{*}}{(\gamma +x)(\gamma +x_{*})} \Bigr \} \Bigl \{\frac{c_{2} \sigma z^{*^{2}}}{y_{*}y}+ \frac{\alpha \alpha _{2} x_{*}z_{*}}{(\gamma +x_{*})y_{*}y} \Bigr \} \\&+\,\frac{1}{2} \frac{\alpha \alpha _{1} \alpha _{2} \gamma z_{*}}{(\gamma +x)^{2}(\gamma +x_{*})y}\Bigl (1-\frac{\alpha \gamma }{\gamma +x_{*}}\Bigr )+\frac{1}{4} \frac{\alpha \alpha _{1}^{2} \gamma }{(\gamma +x)^{2}(\gamma +x_{*})} \Bigl (1-\frac{\alpha \gamma }{\gamma +x_{*}} \Bigr )\\&+\,\frac{1}{4} \frac{\alpha \gamma }{(\gamma +x)^{2}(\gamma +x_{*})} \Bigl \{\alpha _{1}^{2}-\frac{\alpha \alpha _{2}^{2}\gamma z^{*^{2}} }{(\gamma +x_{*})y^{2}} \Bigr \} \Bigr ]\\> & {} \Bigl [\Bigl \{\Bigl (\frac{r}{k}-\frac{\alpha _{1} y_{*}+ \alpha _{2}z_{*}}{\gamma (\gamma +x_{*})} \Bigl ) \sigma (1-c_{1})\beta \\&-\,\frac{1}{4}\Bigl (\frac{\alpha _{1}}{\gamma }\Bigr )^{2} \Bigr \}+\Bigl \{\frac{r}{k}-\frac{\alpha _{1} y_{*}+ \alpha _{2}z_{*}}{\gamma (\gamma +x_{*})} \Bigr \} \Bigl \{\frac{c_{2} \sigma z^{*^{2}}}{y_{*}y}+ \frac{\alpha \alpha _{2} x_{*}z_{*}}{(\gamma +x_{*})y_{*}y} \Bigr \} \\&+\,\frac{1}{2} \frac{\alpha \alpha _{1} \alpha _{2} \gamma z_{*}}{(\gamma +x)^{2}(\gamma +x_{*})y}\Bigl (1-\frac{\alpha \gamma }{\gamma +x_{*}}\Bigr )+\frac{1}{4} \frac{\alpha \alpha _{1}^{2} \gamma }{(\gamma +x)^{2}(\gamma +x_{*})} \Bigl (1-\frac{\alpha \gamma }{\gamma +x_{*}} \Bigl )\\&+\,\frac{1}{4} \frac{\alpha \gamma }{(\gamma +x)^{2}(\gamma +x_{*})} \Bigl \{\alpha _{1}^{2}-\frac{\alpha \alpha _{2}^{2}\gamma z^{*^{2}} }{(\gamma +x_{*})y^{2}} \Bigr \} \Bigr ] >0. \end{aligned}$$

Now for \({\mathbb {P}}_{3}\), we have

$$\begin{aligned}&\varOmega _{12}\varOmega _{13}-\varOmega _{11}\varOmega _{23}\\&\quad =\frac{1}{4}\Bigl [ \Bigl \{ \frac{\alpha _{1}}{(\gamma +x)}-\frac{\alpha \alpha _{1} \gamma }{(\gamma +x)(\gamma +x_{*})}- \frac{\alpha \alpha _{2} \gamma z_{*}}{(\gamma +x)(\gamma +x_{*})y} \Bigr \}\\&\qquad \times \frac{\alpha _{2}}{(\gamma +x)}-2 \Bigl \{\frac{r}{k}-\frac{(\alpha _{1} y_{*}+ \alpha _{2}z_{*})}{(\gamma +x)(\gamma +x_{*})}\Bigr \} \\&\qquad \times \Bigl \{ \sigma (1-c_{1})+\sigma \beta (1-c_{2})-c_{2} \sigma \frac{z}{y}-c_{2} \sigma \frac{z_{*}}{y}- \frac{\alpha \alpha _{2} x}{(\gamma +x)y}\Bigr \} \Bigr ] \\&\quad =\frac{1}{4} \Bigl [ \Bigl \{ \frac{\alpha _{2}}{(\gamma +x)} \Bigl ( \frac{\alpha _{1}}{(\gamma +x)}-\frac{\alpha \alpha _{1} \gamma }{(\gamma +x)(\gamma +x_{*})}\\&\quad \quad -\,\frac{\alpha \alpha _{2} \gamma z_{*}}{(\gamma +x)(\gamma +x_{*})y} \Bigr ) -\,\frac{2r}{k} \Bigl ( \sigma (1-c_{1})+\sigma \beta (1-c_{2})\Bigl ) \Bigr \} \\&\quad \quad +\,2 \{\sigma (1-c_{1})+\sigma \beta (1-c_{2}) \}\frac{\alpha _{1} y_{*}+ \alpha _{2}z_{*}}{(\gamma +x)(\gamma +x_{*})}+2 \Bigl \{\frac{r}{k}-\frac{\alpha _{1} y_{*}+ \alpha _{2}z_{*}}{(\gamma +x)(\gamma +x_{*})}\Bigr \}\\&\quad \quad \times \Bigl \{ c_{2} \sigma \frac{z}{y}+c_{2} \sigma \frac{z_{*}}{y}+ \frac{\alpha \alpha _{2} x}{(\gamma +x)y} \Bigr \} \Bigr ] \\&\quad =\frac{1}{4} \Bigl [ \Bigl \{ \frac{\alpha _{2}}{(\gamma +x)} \Bigl ( \frac{\alpha _{1}}{(\gamma +x)}-\frac{\alpha \alpha _{1} \gamma }{(\gamma +x)(\gamma +x_{*})}- \frac{\alpha \alpha _{2} \gamma z_{*}}{(\gamma +x)(\gamma +x_{*})y} \Bigr ) \\&\quad \quad -\,\frac{2r}{k} \Bigl ( \sigma (1-c_{1})+\sigma \beta (1-c_{2})\Bigl ) \Bigr \} +2 \{\sigma (1-c_{1})\\&\quad \quad +\,\sigma \beta (1-c_{2}) \}\frac{\alpha _{1} y_{*}+ \alpha _{2}z_{*}}{(\gamma +x)(\gamma +x_{*})}+2 \Bigl \{\frac{r}{k}-\frac{\alpha _{1} y_{*} +\alpha _{2}z_{*}}{\gamma (\gamma +x_{*})}\Bigr \}\\&\quad \quad \times \Bigl \{ c_{2} \sigma \frac{z}{y}+c_{2} \sigma \frac{z_{*}}{y}+ \frac{\alpha \alpha _{2} x}{(\gamma +x)y} \Bigr \} \Bigr ]>0 \,(\hbox {Using } (4.3)\hbox { and }(4.4)). \end{aligned}$$

From (4.5), we have \(\varOmega _{23}=\frac{1}{2} \{ \sigma (1-c_{1})+\sigma \beta (1-c_{2})-c_{2} \sigma \frac{z}{y}-c_{2} \sigma \frac{z_{*}}{y}- \frac{\alpha \alpha _{2} x}{(\gamma +x)y}\}>0\).

Using (4.4) and (4.6), for \({\mathbb {P}}_{3}\), we get

$$\begin{aligned} \varOmega _{12}\varOmega _{23}-\varOmega _{22}\varOmega _{13}= & {} \frac{1}{4}\Bigl [ \Bigl \{ \frac{\alpha _{1}}{(\gamma +x)}-\frac{\alpha \alpha _{1} \gamma }{(\gamma +x)(\gamma +x_{*})}- \frac{\alpha \alpha _{2} \gamma z_{*}}{(\gamma +x)(\gamma +x_{*})y} \Bigr \} \\&\times \Bigl \{ \sigma (1-c_{1})+\sigma \beta (1-c_{2})-c_{2} \sigma \frac{z}{y}-c_{2} \sigma \frac{z_{*}}{y}- \frac{\alpha \alpha _{2} x}{(\gamma +x)y} \Bigr \}\\&-\,\Bigl \{ \sigma (1-c_{1})\beta +\frac{c_{2} \sigma z^{*^{2}}}{y_{*}y}+ \frac{\alpha \alpha _{2} x_{*}z_{*}}{(\gamma +x_{*})y_{*}y} \Bigr \} \frac{2\alpha _{2}}{(\gamma +x)} \Bigr ] \\= & {} \frac{1}{4}\Bigl [ \Bigl \{ \Bigl ( \sigma (1-c_{1})+\sigma \beta (1-c_{2}) \Bigr ) \\&\times \Bigl ( \frac{\alpha _{1}}{(\gamma +x)}-\frac{\alpha \alpha _{1} \gamma }{(\gamma +x)(\gamma +x_{*})}- \frac{\alpha \alpha _{2} \gamma z_{*}}{(\gamma +x)(\gamma +x_{*})y} \Bigr )\\&-\,\Bigl ( \sigma (1-c_{1})\beta +\frac{c_{2} \sigma z^{*^{2}}}{y_{*}y}+ \frac{\alpha \alpha _{2} x_{*}z_{*}}{(\gamma +x_{*})y_{*}y}\Bigr ) \frac{2\alpha _{2}}{(\gamma +x)}\Bigr \}\\&+\,\Bigl \{ c_{2} \sigma \frac{z}{y}+c_{2} \sigma \frac{z_{*}}{y} \Bigr \} \times \Bigl \{ \frac{\alpha \alpha _{2} \gamma z_{*}}{(\gamma +x)(\gamma +x_{*})y}-\frac{\alpha _{1}}{(\gamma +x)} \Bigr \} \\&+\,\frac{\alpha \alpha _{2} x}{(\gamma +x)y} \Bigl \{ \frac{\alpha \alpha _{2} \gamma z_{*}}{(\gamma +x)(\gamma +x_{*})y}-\frac{\alpha _{1}}{(\gamma +x)} \Bigr \} \\&+\,\frac{\alpha \alpha _{1} \gamma }{(\gamma +x)(\gamma +x_{*})}\Bigl \{ c_{2} \sigma \frac{z}{y}+c_{2} \sigma \frac{z_{*}}{y}+\frac{\alpha \alpha _{2} x}{(\gamma +x)y} \Bigr \} \Bigr ] >0 \end{aligned}$$

Above results suggest that \({\mathbb {P}}_{3}>0\), so the conditions (i), (ii) and (iii) imply that \({\dot{\varSigma }}<0\) along the trajectories. Therefore, system (2.4) is globally stable around the interior equilibrium point \(B_{*}\) according as the conditions stated in the theorem hold.

Appendix 2

Let \(\mu (\sigma )=\varrho (\sigma )+ i \varsigma (\sigma )\) for all \(\sigma \in R^{+}\), the characteristic value of the characteristic Eq. (7.1). Substituting this value in Eq. (7.1), and separate real and imaginary parts as

$$\begin{aligned}&\varrho ^{3}-3\varrho \varsigma ^{2}+ (\varrho ^{2}-\varsigma ^{2})\varTheta _{1}+ \varrho \varTheta _{2}+\varTheta _{3} = 0, \end{aligned}$$
(7.2)
$$\begin{aligned}&3\varrho ^{2}\varsigma -\varsigma ^{3}+2\varrho \varsigma \varTheta _{1} +\varsigma \varTheta _{2} = 0. \end{aligned}$$
(7.3)

A necessary condition for a Hopf bifurcation of \(B_{*}\) is that the characteristic equation (7.1) should have purely imaginary solutions. For the Hopf bifurcation to occur at \(\sigma =\sigma ^{*}\), substituting \(\varTheta _{1}(\sigma ^{*})\varTheta _{2}(\sigma ^{*})=\varTheta _{3}(\sigma ^{*})\) into Eq. (7.1), the characteristic equation must be of the form

$$\begin{aligned}{}[\mu ^{2}+\varTheta _{2}(\sigma ^{*})] [\mu +\varTheta _{1}(\sigma ^{*}) ]=0. \end{aligned}$$
(7.4)

Thus, the characteristic values of the Eq. (7.4) are \(\mu _{1,2}(\sigma ^{*})=\pm i\sqrt{\varTheta _{2}(\sigma ^{*})}=\pm i\varsigma ^{*}\) and \(\mu _{3}(\sigma ^{*})=-\varTheta _{1}(\sigma ^{*})\). By using the condition (i) of the Theorem 4, we have \(\varsigma ^{*}>0\) and \(\mu _{3}(\sigma ^{*})<0\).

Now, we can verify the transversality condition

$$\begin{aligned} \left[ \frac{d}{d\sigma }[Re\{\mu (\sigma )\}]\right] _{\sigma =\sigma ^{*}}\ne 0. \end{aligned}$$
(7.5)

Calculating the derivative of (7.2) and (7.3) w.r.t. \(\sigma \) and substituting \(\varrho =0, \varsigma =\varsigma ^{*}\) and \(\sigma =\sigma ^{*}\), we get

$$\begin{aligned} \begin{aligned}&\mathcal {P}\left[ \frac{d[Re\{\mu (\sigma \}]}{d\sigma }\right] _{\sigma =\sigma ^{*}}-\mathcal {Q}\left[ \frac{d[Im\{\mu (\sigma )\}]}{d\sigma }\right] _{\sigma =\sigma ^{*}}= \mathcal {L},\\&\mathcal {Q}\left[ \frac{d[Re\{\mu (\sigma )\}]}{d\sigma }\right] _{\sigma =\sigma ^{*}}+\mathcal {P}\left[ \frac{d[Im\{\mu (\sigma )\}]}{d\sigma }\right] _{\sigma =\sigma ^{*}}= \mathcal {M},\\ \end{aligned} \end{aligned}$$
(7.6)

where \(\mathcal {P}=-2\varTheta _{2}(\sigma ^{*}), \mathcal {Q}=2\varTheta _{1}(\sigma ^{*})\sqrt{\varTheta _{2}(\sigma ^{*})}, \mathcal {L}=\acute{\varTheta _{1}}(\sigma ^{*})\varTheta _{2}(\sigma ^{*})-\acute{\varTheta _{3}}(\sigma ^{*}), \mathcal {M}=-\acute{\varTheta _{2}}(\sigma ^{*})\sqrt{\varTheta _{2}(\sigma ^{*})}\).

Solving for \(\acute{\mu }(\sigma ^{*})\) from system (7.6) we obtained

$$\begin{aligned} \left[ \frac{d}{d\sigma }[Re\{\mu (\sigma )\}]\right] _{\sigma =\sigma ^{*}}= & {} \acute{\mu }(\sigma ^{*}) =\frac{\mathcal {L}\mathcal {P}+\mathcal {M}\mathcal {Q}}{\mathcal {P}^{2}+\mathcal {Q}^{2}}\\= & {} \frac{2\varTheta _{2}(\sigma ^{*})\{\acute{\varTheta _{3}}(\sigma ^{*})-\varTheta _{1}(\sigma ^{*}) \acute{\varTheta _{2}}(\sigma ^{*})-\acute{\varTheta _{1}}(\sigma ^{*})\varTheta _{2}(\sigma ^{*}) \}}{\mathcal {P}^{2}+\mathcal {Q}^{2}}. \end{aligned}$$

Hence \(\acute{\mu }(\sigma ^{*})>0\), if \(\varTheta _{2}(\sigma ^{*}) > 0\) and \(\acute{\varTheta _{3}}(\sigma ^{*})>[\varTheta _{1}(\sigma ^{*})\varTheta _{2}(\sigma ^{*})]^{'}\). Therefore, the transversality condition is satisfied and a Hopf bifurcation occurs when \(\sigma \) passes through the critical value \(\sigma ^{*}\).

Appendix 3

Let \(\tilde{p}\) be a point in the positive quadrant and \(o(\tilde{p})\) be orbit through \(\tilde{p}\) and \(\tilde{\varOmega }(\tilde{p})\) be the bounded omega limit set of the orbit through \(\tilde{p}\). \(W^{s}(B_{r})\) denotes the stable manifold of \(B_{r}, r=1,2\).

Clearly \(B_{0}\notin \tilde{\varOmega }(\tilde{p})\). If possible, let \(B_{0}\in \tilde{\varOmega }(\tilde{p})\) then by the Butler-McGehee lemma there exists a point m in \(\tilde{\varOmega }(\tilde{p})\cap W^{s}(B_{0})\). But, o(m) lies in \(\tilde{\varOmega }\) and \(W^{s}(B_{0})\) is the yz-plane, which shows that o(m) is unbounded, a contradiction.

Next we show that \(B_{1}\notin \tilde{\varOmega }(\tilde{p})\). If \(B_{1}\in \tilde{\varOmega }(\tilde{p})\), the condition \(R_{01}>1\) implies that \(B_{1}\) is a saddle point, then applying the Butler–McGehee lemma there exists a point m in \(\tilde{\varOmega }(\tilde{p})\cap W^{s}(B_{1})\). Now \(\tilde{\varOmega }(\tilde{p})\cap W^{s}(B_{1})\) is the xz-space and hence orbit in this plane emanate from either \(B_{1}\) or an unbounded orbit lies in \(\tilde{\varOmega }(\tilde{p})\), which is a contradiction.

Finally, we show that no periodic orbit solution in the xy-space or \(B_{2}\in \tilde{\varOmega }(\tilde{p})\). If \(q_{j}, j=1, 2,\ldots , n\) denote the closed orbit of the periodic solution \((\varphi _{q}(t), \psi _{q}(t))\) in xy-space such that \(q_{j}\) lies inside \(q_{j-1}\). Let, the Jacobian matrix J of the system (2.4) corresponding to \(q_{j}\) be denoted by \(J_{q}(\varphi _{q}(t), \psi _{q}(t), 0)\). The fundamental matrix of the linear periodic system is given by

$$\begin{aligned} {\dot{Z}}=J_{q}(t), \quad Z(0)=Z_{0}. \end{aligned}$$
(7.7)

We find that, \(e^{\zeta _{q}\mathcal {T}}\) is the Floquet multiplier of (7.7) in the direction of z. Then applying the process as proposed by Kumar and Freedman (1989), we conclude that no \(q_{j}\) lies on \(\tilde{\varOmega }\). Therefore, \(\tilde{\varOmega }\) lies in the positive quadrant and system (2.4) is persistent. Since only the closed orbits and the equilibria from the omega limit set of the solutions are on the boundary of \(R^{3}_{+}\) and system (2.4) is dissipative. Thus, the system (2.4) is uniformly persistent by the main theorem of Butler et al. (1986).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Samanta, S. & Chattopadhyay, J. A cannibalistic eco-epidemiological model with disease in predator population. J. Appl. Math. Comput. 57, 161–197 (2018). https://doi.org/10.1007/s12190-017-1100-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-017-1100-9

Keywords

Mathematics Subject Classification

Navigation