Skip to main content
Log in

Disease-Induced Chaotic Oscillations and its Possible Control in a Predator–Prey System with Disease in Predator

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

The effect of parasites and pathogens in prey populations received a lot of attention but disease in predator population has been studied comparatively little in literature. In the present paper we consider a predator–prey model with disease in predator population. We analyze the local stability of model system around the equilibria. We derive the ecological as well as disease basic reproduction numbers and study the community structure of model system by these numbers. We work out the conditions of Hopf bifurcation and persistence of system. Our numerical results reveals that system shows chaotic dynamics for increasing the infection in predator. It is also observe that half saturation constant is responsible for occurrence and control of chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson, R.M., May, R.M.: The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. R. Soc. Lond. Ser. B291, 451–524 (1981)

    Article  Google Scholar 

  2. Anderson, R.M.: Transmission dynamics and control of infectious disease agents. In: Anderson, R.M., May, R.M. (eds.) Population Biology of Infectious Diseasess, pp. 149–176. Springer, Berlin (1982)

    Chapter  Google Scholar 

  3. Anderson, R.M., May, R.M.: The invasion, persistence and spread of infectious diseases within animal and plant communities. Philos. Trans. R. Soc. Lond. B 314, 533–570 (1986)

    Article  Google Scholar 

  4. Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Dynamics and Control. Oxford University Press, Oxford (1991)

    Google Scholar 

  5. Arino, O., Abdllaoui, A., Mikram, J., Chattopadhyay, J.: Infection on prey population may act as a biological control in ratio-dependent predator–prey model. Nonlinearity 17, 1101–1116 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Capasso, V., Serio, G.: A generalization of the Kermack–McKendrick deterministic epidemic model. Math. Biosci. 42, 4161 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chatterjee, S., Bandyopadhyay, M., Chattopadhyay, J.: Proper predation makes the system disease free- conclusion drawn from an eco-epidemiological model. J. Biol. Syst. 14(4), 599–616 (2006)

    Article  MATH  Google Scholar 

  8. Chattopadhyay, J., Arino, O.: A predator–prey model with disease in the prey. Nonlinear Anal. 36, 747–766 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coyner, D.F., Schaack, S.R., Spalding, M.G., Forrester, D.J.: Altered predation susceptibility of Mosquitofish infected with Eu- strongylides ignotus. J. Wildl. Dis. 37(3), 556–560 (2001)

    Article  Google Scholar 

  10. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproductive ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dobson, A.P.: The population biology of parasite induced changes in host behaviour. Q. Rev. Biol. 63, 139–165 (1988)

    Article  Google Scholar 

  12. Eisenberg, J.N., Maszle, D.R.: The structural stability o f a three-species food chain model. J. Theor. Biol. 176, 501–510 (1995)

    Article  Google Scholar 

  13. Ebert, D., Lipsitch, M., Mangin, K.L.: The effect of parasites on host population density and extinction: experimental epidemiology with Daphnia and six microparasites. Am. Nat. 156, 459477 (2000)

    Article  Google Scholar 

  14. Eppley, R.W., Rogers, J.N., McCarthy, J.J.: Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14(6), 912–920 (1969)

    Article  Google Scholar 

  15. Gilpin, M.E.: Spiral chaos in a predator–prey model. Am. Nat. 107, 306–308 (1979)

    Article  MathSciNet  Google Scholar 

  16. Godfrey, H.C.J., Grenfell, B.T.: The continuing quest for chaos. Trends Ecol. Evol. 8, 43–44 (1993)

    Article  Google Scholar 

  17. Greenhalgh, D., Haque, M.: A predator–prey model with disease in the prey species only. Math. Meth. Appl. Sci. 30, 911929 (2006)

    MathSciNet  Google Scholar 

  18. Grenfell, B.T., Dobson, A.P. (eds.): Ecology of Infectious Diseases in Natural Populations. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  19. Grenfell, B.T., Kleczkowski, A., Ellner, S.P., Bolker, B.M.: Measles as a case-study in nonlinear forecasting and chaos. Philos. Trans. R. Soc. Lond. 348, 515–530 (1995)

    Article  MATH  Google Scholar 

  20. Haque, M., Venturino, E.: The role of transmissible diseases in the Holling–Tanner predator–prey model. Theor. Appl. Biol. 70, 273–288 (2006)

    MATH  Google Scholar 

  21. Haque, M., Venturino, E.: An ecoepidemiological model with disease in predator: the ratio-dependent case. Math. Meth. Appl. Sci. 30, 17911809 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hassell, M.P., Varley, G.C.: New inductive population model for insect parasites and its bearing on biological control. Nature (London) 223, 1133–1137 (1969)

    Article  Google Scholar 

  23. Hastings, A., Powell, T.: Chaos in three-species food chain. Ecology 72(3), 896–903 (1991)

    Article  Google Scholar 

  24. Hastings, A., Hom, C.L., Ellner, S., Turchin, P., Godfray, H.C.J.: Chaos in ecology: is mother nature a strange attractor? Ann. Rev. Ecol. Syst. 24, 1–33 (1993)

    Article  Google Scholar 

  25. Hadeler, K.P., Freedman, H.I.: Predator–prey populations with parasitic infection. J. Math. Biol. 27, 609–631 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Han, L., Ma, Z., Hethcote, H.W.: Four predator prey models with infectious diseases. Math. Comp. Model. 34, 849858 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hethcote, H.W., Han, W.W.L., Zhien, Ma.: A predator–prey model with infected prey. Theor. Popul. Biol. 66, 259–268 (2004)

    Article  Google Scholar 

  28. Holmes, J.C., Bethel, W.M.: Modification of intermediate host behaviour by parasites. In: Canning, E.U., Wright, C.A. (eds.) Behavioural Aspects of Parasites Transmission, pp. 123–149. Academic Press, London (1972)

    Google Scholar 

  29. Kermack, W.O., Mc Kendrick, A.G.: Contributions to the mathematical theory of epidemics, part 1. Proc. R. Soc. Lond. Ser. A 115, 700–721 (1927)

    Article  Google Scholar 

  30. Lotka, A.J.: Elements of Physical Biology. Williaams and Wilkins Co., Inc., Baltimore (1924)

    MATH  Google Scholar 

  31. Lafferty, K.D., Morhis, A.K.: Altered behaviour of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology 77, 1390–1397 (1996)

    Article  Google Scholar 

  32. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  Google Scholar 

  33. May, R.M., Anderson, R.M.: Population biology of infectious diseases II. Nature 280, 455 461 (1979)

    Article  Google Scholar 

  34. McCann, K., Yodzis, P.: Biological conditions for chaos in a three-species food chain. Ecology 75(2), 561–564 (1994)

    Article  Google Scholar 

  35. Mena-Lorca, J., Hethcote, H.W.: Dynamic models of infectious diseases as regulators of population size. J. Math. Biol. 30, 693716 (1992)

    MathSciNet  MATH  Google Scholar 

  36. Olsen, L.F., Truty, G.L., Schaffer, W.M.: Oscillations and chaos in epidemics: a non-linear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor. Popul. Biol. 33, 344–370 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pielou, E.C.: Introduction to Mathematical Ecology. Wiley-Interscience, New York (1969)

    MATH  Google Scholar 

  38. Ruxton, G.D.: Low levels of immigration between chaotic populations can reduce system extinctions by inducing asynchronous cycles. Proc. R. Soc. Lond. B 256, 189–193 (1994)

    Article  Google Scholar 

  39. Ruxton, G.D.: Chaos in a three-species food chain with a l ower bound on the bottom population. Ecology 77(1), 317–319 (1996)

    Article  Google Scholar 

  40. Schaffer, W.M., Kot, M.: Do strange attractors govern ecological systems? BioScience 35, 342–350 (1985)

    Article  Google Scholar 

  41. Schaffer, W.M., Kot, M.: Chaos in ecological systems the coals that Newcastle forgot. Trends Ecol. Evol. 1, 58–63 (1986)

    Article  Google Scholar 

  42. Singh, S., Chandra, P., Shukla, J.B.: Modeling and analysis of spread of carrier dependent infectious diseases with environmental effects. J. Biol. Syst. 11, 325335 (2003)

    Article  MATH  Google Scholar 

  43. Toetz, D.W., Varga, L.P., Loughran, E.D.: Half-saturation constants for uptake of nitrate and ammonia by reservoir plankton. Ecology 54(4), 903–908 (1973)

    Article  Google Scholar 

  44. Upadhyay, R., Bairagi, N., Kundu, K., Chattopadhyay, J.: Chaos in eco-epidemiological problem of Salton Sea and its possible control. Appl. Math. Comput. 196(1), 392–401 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Venturino, E.: The influence of disease on Lotka–Volterra systems. Rky. Mt. J. Math. 24, 381402 (1994)

    MathSciNet  Google Scholar 

  46. Venturino, E.: Epidemics in predator–prey model: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185–205 (2002)

    Article  MATH  Google Scholar 

  47. Xiao, Y., Chen, L.: Modelling and analysis of a predator–prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the reviewer for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna pada Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K.p. Disease-Induced Chaotic Oscillations and its Possible Control in a Predator–Prey System with Disease in Predator. Differ Equ Dyn Syst 24, 215–230 (2016). https://doi.org/10.1007/s12591-015-0249-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-015-0249-7

Keywords

Navigation