Skip to main content
Log in

Endogenous Altruism and Impact of Child Labour Ban and Education Subsidy on Child Labour

  • Published:
Child Indicators Research Aims and scope Submit manuscript

Abstract

This paper builds an overlapping generations household economy model where child labour is present. Child schooling is determined by parental altruism. The degree of parental altruism is determined by the level of schooling of the parent. A more educated parent has a greater willingness to invest in the human capital formation of the child. These differences in the preferences of parents towards their offspring’s schooling have significant effects on the long-run dynamics of schooling. The dynamics of schooling exhibit the possibility of the existence of a child labour trap. If the economy is trapped in an inefficient equilibrium, increasing the child wage and the adult unskilled wage can help the economy get rid of the child labour trap. In this paper, we also study the efficacy of child labour ban and education subsidy in enhancing schooling and reducing child labour. We find that education subsidy is always likely to increase child schooling and reduce child labour. But banning child labour will increase schooling if the adult wage exceeds the sum of schooling cost and subsistence consumption expenditure. Once the economy reaches the advanced stage, banning child labour is desirable to take the stable equilibrium to full schooling equilibrium, but before that, banning child labour is not desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Notes

  1. As per Basu and Van (1998), the efficient equilibrium may be termed as a good equilibrium and the inefficient as a bad equilibrium.

  2. The overlapping generations framework has been adopted by Becker and Tomes (1979), Acemoglu and Pischke (2000), Glomm (1997), Glomm and Ravikumar (1998), and many more.

  3. The inclusion of parental human capital in the human capital accumulation of child yields nonlinear equations and makes the model very complicated. So, for the sake of simplicity, the human capital accumulation of a child is assumed to take this form.

  4. For detailed derivation please see equations (6), (7), and (8) of the Appendix.

  5. For detailed derivation see Appendix.

  6. For detailed derivation please see equations (11), (12), (13), (14) and (15) of Appendix.

  7. Fabre and Pallage (2011), Schultz (2004), Ravallion and Wodon (2000), Krueger and Donohue (2005).

References

  • Acemoglu, D. and J.S. Pischke (2000) “Changes in the wage structure, family income, and children’s education” NBER Working Paper Number 7986.

  • Baland, J., & Robinson, J. (2000). Is Child Labour Inefficient? Journal of Political Economy, 108, 663–679.

    Article  Google Scholar 

  • Basu, K. (2005). Child labour and the law: Notes on possible pathologies. Economics Letters, 87(2), 169–174.

    Article  Google Scholar 

  • Basu, K., & Van, P. (1998). The Economics of Child Labour. The American Economic Review, 88, 412–427.

    Google Scholar 

  • Becker, G. S., & Tomes, N. (1979). An Equilibrium Theory of the Distribution of Income and Intergenerational Mobility. Journal of Political Economy, 87 (6).

  • Bharadwaj et al. (2013). Perverse Consequences of Well-Intentioned Regulation: Evidence from India’s Chila Labor Ban. NBER Working Paper Number 19602.

  • Chaudhuri, S. (2004). Incidence of Child Labour, Free Education policy, and Economic Liberalisation in a Developing Economy. The Pakistan Development Review, 43(1), 1–25.

    Google Scholar 

  • Chaudhuri, S., & Mukhopadhyay, U. (2003). Free Education Policy and Trade Liberalization: Consequences on Child and Adult Labour Markets in a Small Open Economy. Journal of Economic Integration, 18(2), 336–359.

    Article  Google Scholar 

  • Das, M. (2007). Persistent inequality: An explanation based on limited parental altruism. Journal of Development Economics, 84, 251–270.

    Article  Google Scholar 

  • Dessy, S., & Pallage, S. (2001). Child labor and Coordination failures. Journal of Development Economics, 65(2), 469–476.

    Article  Google Scholar 

  • Dessy, S., & Pallage, S. (2005). A Theory of the Worst Forms of Child Labour. The Economic Journal, 115(500), 68–87.

    Article  Google Scholar 

  • Dinopoulos, E., & Zhao, L. (2007). Child Labor and Globalization. Journal of Labor Economics, 25(3), 553–579.

    Article  Google Scholar 

  • Edmonds, E. V., & Shrestha, M. (2012). Impact of minimum age of employment regulation on child labour and schooling. IZA Journal of Labor Policy, 1(14), 2–28.

    Google Scholar 

  • Emerson, P. M., & Knabb, S. D. (2006). Opportunity, Inequality and the Intergenerational Transmission of Child Labour. Economica, New Series, 73(291), 413–434.

    Article  Google Scholar 

  • Estevez, K. (2011). Nutritional Efficiency Wages and Child Labour. Economic Modelling, 28, 1793–1801.

    Article  Google Scholar 

  • Fabre, A., & Pallage, S. (2011). Child labor, idiosyncratic shocks, and social policy. CIRPEE Working Paper Number, 11–15.

  • Glomm, G. (1997). Parental choice of human capital investment. Journal of Development Economics, 53, 99–114.

    Article  Google Scholar 

  • Glomm, G., & Ravikumar, B. (1998). Increasing returns, human capital, and the Kuznets curve. Journal of Development Economics, 55, 353–367.

  • Krueger, D., & Donohue, J. T. (2005). On the distributional consequences of child labor legislation. International Economic Review, 46(3).

  • Moav, O. (2005). Cheap children and the Persistence of Poverty. Economic Journal Royal, Economic Society, 115(500), 88–110.

    Google Scholar 

  • Mukherjee, D., & Sinha, U. (2006). Schooling, Job prospect and child labour in a developing economy. mimeo: Indian Statistical Institute, Kolkata.

  • Mulligan, C. (1997). Parental Priorities and Economic Inequality. University of Chicago Press.

    Google Scholar 

  • Ranjan, P. (1999). An economic analysis of child labour. Economic Letters, 64, 99–105.

    Article  Google Scholar 

  • Ranjan, P. (2001). Credit constraints and the phenomenon of child labor. Journal of Development Economics, 64, 81–102.

    Article  Google Scholar 

  • Ravallion, M., & Wodon, Q. T. (2000). Does child labour displace schooling? Evidence on behavioural responses to an enrollment subsidy. The Economic Journal, 110(462).

  • Rogers, C. A., & Swinnerton, K. A. (2002). A theory of exploitative child labor. Working Paper from Georgetown University, Department of Economics.

  • Schultz, T. P. (2004). School subsidies for the poor: Evaluating the Mexican Progresa poverty program. Journal of Development Economics, 74, 199–250.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Kamalika Chakraborty and Bidisha Chakraborty conceived the presented idea. Kamalika Chakraborty developed the theory and performed the computations. Bidisha Chakraborty verified the theoretical modelling and made a critical analysis of the propositions derived from this work. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Kamalika Chakraborty.

Ethics declarations

Competing Interests

Not applicable.

Statement Regarding Informed Consent

Not applicable.

Statement Regarding Ethical Approval

Not applicable.

Statement Regarding Research Involving Human Participants and/or Animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

The Lagrangian function is.

Z = ln(ct-\(\underline{\mathrm c}\)) + st-1ln (bst) + λ [{\(\underline{\mathrm W}\) + δbst-1 +\(\underline{\mathrm W}\) φ (1-st)—pcct -ρst] + θ(ct-\(\underline{\mathrm c}\)).

where λ is the Lagrange multiplier. The decision variables of the household are ct and st.. The first order conditions for maximization of utility are given by:

$$\frac{\mathrm\delta\mathrm Z}{\mathrm\delta{\mathrm{c}}_\mathrm{t}}=\frac1{{\mathrm{c}}_\mathrm{t}-\underline{\mathrm c}}-{\mathrm\lambda\mathrm p}_\mathrm{c}+\theta=0$$
(6)
$$\frac{\delta\mathrm Z}{\mathrm\delta s_{\mathrm t}}=\frac{{\mathrm s}_{\mathrm t-1}}{{\mathrm s}_{\mathrm t}}-\lambda\left(\underline{\mathrm W}\mathrm\varphi+\rho\right)=0$$
(7)

  

$$\theta\geq0,\theta\left(\mathrm{c_t}-\underline{\mathrm c}\right)=0$$
(8)

From (6) and budget constraint \(\underline{\mathrm W}\) + δbst-1 + \(\underline{\mathrm W}\) φ (1-st) = pcct +ρst, we get

$$\frac1{\underline{\mathrm W}+\underline{\mathrm W}\mathrm\varphi(1-{\mathrm{s}}_\mathrm{t})-{\mathrm{p}}_\mathrm{c}\underline{\mathrm c}-\rho{\mathrm{s}}_\mathrm{t}}=\lambda$$
(9)

From (7) and (9) we get,

$${\mathrm{s}}_\mathrm{t}=\frac{{\mathrm{s}}_{\mathrm{t}-1}\left[\underline{\mathrm W}+\mathrm\delta\mathrm b{\mathrm{s}}_{\mathrm{t}-1}+\underline{\mathrm W}\mathrm\varphi-{\mathrm{p}}_\mathrm{c}\underline{\mathrm c}\right]}{\left(\underline{\mathrm W}\mathrm\varphi+\rho\right)(1+{\mathrm{s}}_{\mathrm{t}-1})}$$
(10)
$$\frac{{\mathrm{ds}}_\mathrm{t}}{\mathrm d\mathrm\varphi}=\frac{{\underline{\mathrm W}\mathrm{s}}_{\mathrm{t}-1}}{(1+{\mathrm{s}}_{\mathrm{t}-1})}\left[\frac{\rho-\mathrm\delta\mathrm b{\mathrm{s}}_{\mathrm{t}-1}-\underline{\mathrm W}+{\mathrm{p}}_\mathrm{c}\underline{\mathrm c}}{\left(\underline{\mathrm W}\mathrm\varphi+\rho\right)^2}\right]$$
(11)
$$\frac{\mathrm{ds}^\ast}{\mathrm d\mathrm\rho}=\frac{\mathrm\delta\mathrm b+{\mathrm{p}}_\mathrm{c}\underline{\mathrm c}-\underline{\mathrm W}-\underline{\mathrm W}\mathrm\varphi}{{(\underline{\mathrm W}\mathrm\varphi+\rho-\mathrm\delta\mathrm b)}^2}$$
(12)
$$\frac{\mathrm{ds}^\ast}{\mathrm{d}\underline{\mathrm W}}=\frac{\rho+\mathrm\rho\mathrm\varphi+{\mathrm{p}}_\mathrm{c}\underline{\mathrm c}\mathrm\varphi-\mathrm\delta\mathrm b}{{(\underline{\mathrm W}\mathrm\varphi+\rho-\mathrm\delta\mathrm b)}^2}$$
(13)

 

$$\frac{\mathrm{ds}^\ast}{\mathrm d\mathrm\delta}=\frac{\mathrm{b}(\underline{\mathrm W}-\rho-{\mathrm{p}}_\mathrm{c}\underline{\mathrm c})}{{(\underline{\mathrm W}\mathrm\varphi+\rho-\mathrm\delta\mathrm b)}^2}$$
(14)
$$\frac{\mathrm{ds}^\ast}{\mathrm{db}}=\frac{\mathrm\delta(\underline{\mathrm W}-\rho-{\mathrm{p}}_\mathrm{c}\underline{\mathrm c})}{{(\underline{\mathrm W}\mathrm\varphi+\rho-\mathrm\delta\mathrm b)}^2}$$
(15)

 

Dynamics of schooling

Differentiating st with respect to \({{\mathrm{s}}}_{{\mathrm{t}}-1}\) we get

$$\frac{{{\mathrm{ds}}}_{{\mathrm{t}}}}{{{\mathrm{ds}}}_{{\mathrm{t}}-1}}={{\mathrm{s}}}_{{\mathrm{t}}}^{\mathrm{^{\prime}}}=\frac{\mathrm{\delta b}{{\mathrm{s}}}_{{\mathrm{t}}-1}^{2}+ 2\mathrm{\delta b}{{\mathrm{s}}}_{{\mathrm{t}}-1}+\underline{\mathrm W}+\underline{\mathrm W}\mathrm{\varphi }-{{\mathrm{p}}}_{{\mathrm{c}}}\underline{\mathrm c}}{\left(\underline{\mathrm W}\mathrm{\varphi }+\uprho \right){\left(1+{\mathrm{ s}}_{{\mathrm{t}}-1}\right)}^{2}}$$
$${{\mathrm{s}}}_{{\mathrm{t}}}^{\mathrm{^{\prime}}} > 0\mathrm{ if} {{\mathrm{s}}}_{{\mathrm{t}}-1} > \sqrt{\frac{1}{\mathrm{\delta b}}\{\left(\mathrm{\delta b}+{{\mathrm{p}}}_{{\mathrm{c}}}\underline{\mathrm c}\right)-\underline{\mathrm W}\left(1+\mathrm{\varphi }\right)\}}-1$$

When \(\left(\mathrm\delta\mathrm b+{\mathrm{p}}_\mathrm{c}\underline{\mathrm c}\right)\) < \(\underline{\mathrm W}(1+\mathrm\varphi)\), \({{\mathrm{s}}}_{{\mathrm{t}}}^{\mathrm{^{\prime}}}\) >0 for all \({{\mathrm{s}}}_{{\mathrm{t}}-1}\)

But, if \(\left(\mathrm\delta\mathrm b+{\mathrm{p}}_\mathrm{c}\underline{\mathrm c}\right)\) > \(\underline{\mathrm W}(1+\mathrm\varphi)\), then for \({{\mathrm{s}}}_{{\mathrm{t}}-1}\) > \(\sqrt{\frac1{\mathrm\delta\mathrm b}\{\left(\mathrm\delta\mathrm b+{\mathrm{p}}_\mathrm{c}\underline{\mathrm c}\right)-\underline{\mathrm W}\left(1+\mathrm\varphi\right)\}}\) – 1, \({{\mathrm{s}}}_{{\mathrm{t}}}^{\mathrm{^{\prime}}}\) >0.

If \(\sqrt{\frac1{\mathrm\delta\mathrm b}\{\left(\mathrm\delta\mathrm b+{\mathrm{p}}_\mathrm{c}\underline{\mathrm c}\right)-\underline{\mathrm W}\left(1+\mathrm\varphi\right)\}}\) – 1 < 0 for all \({{\mathrm{s}}}_{{\mathrm{t}}-1}, {{\mathrm{s}}}_{{\mathrm{t}}}^{\mathrm{^{\prime}}}\) >0.

But, if \(\sqrt{\frac1{\mathrm\delta\mathrm b}\{\left(\mathrm\delta\mathrm b+{\mathrm{p}}_\mathrm{c}\underline{\mathrm c}\right)-\underline{\mathrm W}\left(1+\mathrm\varphi\right)\}}\)—1 > 0 then,

$${{\mathrm{s}}}_{{\mathrm{t}}}^{\mathrm{^{\prime}}}<0 {\mathrm{when}} {{\mathrm{s}}}_{{\mathrm{t}}-1}<\sqrt{\frac{1}{\mathrm{\delta b}}\{\left(\mathrm{\delta b}+{{\mathrm{p}}}_{{\mathrm{c}}}\underline{\mathrm c}\right)-\underline{\mathrm W}\left(1+\mathrm{\varphi }\right)\}}-1$$
$${{\mathrm{s}}}_{{\mathrm{t}}}^{\mathrm{^{\prime}}}<0 {\mathrm{when}} {{\mathrm{s}}}_{{\mathrm{t}}-1}<\sqrt{\frac{1}{\mathrm{\delta b}}\{\left(\mathrm{\delta b}+{{\mathrm{p}}}_{{\mathrm{c}}}\underline{\mathrm c}\right)-\underline{\mathrm W}\left(1+\mathrm{\varphi }\right)\}}-1$$

Now, \(\sqrt{\frac1{\mathrm\delta\mathrm b}\{\left(\mathrm\delta\mathrm b+{\mathrm{p}}_\mathrm{c}\underline{\mathrm c}\right)-\underline{\mathrm W}\left(1+\mathrm\varphi\right)\}}\) <1 implies \({\mathrm{p}}_\mathrm{c}\underline{\mathrm c}\)< \(\underline{\mathrm W}\left(1+\mathrm\varphi\right)\)  

Note that when \(\underline{\mathrm W}\left(1+\mathrm\varphi\right)\)> \({\mathrm{p}}_\mathrm{c}\underline{\mathrm c}\), then \(\underline{\mathrm W}\left(1+\mathrm\varphi\right)\)> \(\mathrm{\delta b}+\) \({\mathrm{p}}_\mathrm{c}\underline{\mathrm c}\)  

Therefore, when \(\underline{\mathrm W}\left(1+\mathrm\varphi\right)\)> \({\mathrm{p}}_\mathrm{c}\underline{\mathrm c},\) slope of st i.e. \({{\mathrm{s}}}_{{\mathrm{t}}}^{\mathrm{^{\prime}}}\) is always positive.

$$\frac{\mathrm{d}^2{\mathrm{s}}_\mathrm{t}}{\mathrm{ds}_{\mathrm{t}-1}^2}=\frac{2\lbrack\mathrm\delta\mathrm b-\underline{\mathrm W}-\underline{\mathrm W}\mathrm\varphi+{\mathrm{p}}_\mathrm{c}\underline{\mathrm c}\rbrack}{\left(\underline{\mathrm W}\mathrm\varphi+\rho\right){(1+{\mathrm s}_{\mathrm{t}-1})}^3}$$

When \(\mathrm{\delta b}\)+\({\mathrm{p}}_\mathrm{c}\underline{\mathrm c}\)  > \(\underline{\mathrm W}(1+\mathrm\varphi)\), \(\frac{{{\mathrm{d}}}^{2}{{\mathrm{s}}}_{{\mathrm{t}}}}{{{\mathrm{ds}}}_{{\mathrm{t}}-1}^{2}}\) >0.

When \(\mathrm{\delta b}\)+\({\mathrm{p}}_\mathrm{c}\underline{\mathrm c}\)  < \(\underline{\mathrm W}(1+\mathrm\varphi)\), \(\frac{{{\mathrm{d}}}^{2}{{\mathrm{s}}}_{{\mathrm{t}}}}{{{\mathrm{ds}}}_{{\mathrm{t}}-1}^{2}}\) <0.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, K., Chakraborty, B. Endogenous Altruism and Impact of Child Labour Ban and Education Subsidy on Child Labour. Child Ind Res (2024). https://doi.org/10.1007/s12187-024-10119-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12187-024-10119-4

Keywords

Navigation