Skip to main content
Log in

An Overview of Cellulase Immobilization Strategies for Biofuel Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The use of agricultural residue as a substrate and implementation of nanomaterials for cellulase immobilization can improve the efficiency at higher temperature and will lead to reduce the cost of cellulose-assisted biofuel production. The immobilization utilizing cellulase with amino, chitosan, or polymeric functionalities enhanced stability, activity, reusability, inhibition reduction, purification, and selectivity during enzymatic hydrolysis. Covalent interaction between the substrate and the cellulose marks in greater enzymatic immobilization, which pilots to higher biofuel production. Among the various techniques available for immobilization of cellulase on activated and functionalized magnetic nanoparticles, glutaraldehyde-based covalent binding are the most efficient process for cellulase immobilization. This review provides an overview of different cellulase immobilization strategies, factors, and its kinetics for enhanced biofuel production. The expanding need for low-cost immobilized cellulase, as well as its diverse applications in a variety of industries, is propelling research in this field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rajnish KN, Samuel MS, John A, Datta S, Narendhar C, Balaji R, Jose S, Selvarajan E (2021) Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production—a narrative review. Int J Biol Macromol 182:1793–1802

    Article  CAS  PubMed  Google Scholar 

  2. Phitsuwan P, Laohakunjit N, Kerdchoechuen O, Kyu KL, Ratanakhanokchai K (2013) Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia Microbiol 58:163–176

    Article  CAS  Google Scholar 

  3. Khoshnevisan K, Poorakbar E, Baharifar H, Barkhi M (2019) Recent advances of cellulase immobilization onto magnetic nanoparticles: an update review. Magnetochemistry 5:36. https://doi.org/10.3390/magnetochemistry5020036

    Article  CAS  Google Scholar 

  4. John MS, Nagoth JA, Ramasamy KP, Mancini A, Giuli G, Natalello A, Ballarini P, Miceli C, Pucciarelli S (2020) Synthesis of bioactive silver nanoparticles by a Pseudomonas strain associated with the Antarctic psychrophilic protozoon Euplotes focardii. Mar Drugs 18:38. https://doi.org/10.3390/md18010038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16:307–325

    Article  CAS  Google Scholar 

  6. Cipolatti EP, Valerio A, Henriques RO, Moritz DE, Ninow JL, Freire DM, Manoel EA, Fernandez-Lafuente R, de Oliveira D (2016) Nanomaterials for biocatalyst immobilization—state of the art and future trends. RSC Adv 6(106):104675–104692. https://doi.org/10.1039/C6RA22047A

    Article  CAS  Google Scholar 

  7. Zdarta J, Meyer AS, Jesionowski T, Pinelo M (2018) Developments in support materials for immobilization of oxidoreductases: a comprehensive review. Adv Colloid Interf 258:1–20. https://doi.org/10.1016/j.cis.2018.07.004

    Article  CAS  Google Scholar 

  8. Ahmad R, Sardar M (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem 4(2):1. https://doi.org/10.4172/2161-1009.1000178

    Article  CAS  Google Scholar 

  9. Khoshnevisan K, Bordbar A-K, Zare D, Davoodi D, Noruzi M, Barkhi M, Tabatabaei M (2011) Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem Eng J 171(2):669–673. https://doi.org/10.1016/j.cej.2011.04.039

    Article  CAS  Google Scholar 

  10. Xu J, Sheng Z, Wang X, Liu X, Xia J, Xiong P, He B (2016) Enhancement in ionic liquid tolerance of cellulase immobilized on PEGylated graphene oxide nanosheets: application in saccharification of lignocellulose. Bioresour Technol 200:1060–1064. https://doi.org/10.1016/j.biortech.2015.10.070

    Article  CAS  PubMed  Google Scholar 

  11. Chen M, Zeng G, Xu P, Lai C, Tang L (2017) How do enzymes ‘meet’ nanoparticles and nanomaterials? Trends Biochem. Sci 42:914–930

    Google Scholar 

  12. Pandiyaraj KN, Ramkumar MC, Arun Kumar A, Padmanabhan PVA, Pichumani M, Bendavid A, Cools P, De Geyter N, Morent R, Kumar V (2019) Evaluation of surface properties of low density polyethylene (LDPE) films tailored by atmospheric pressure non-thermal plasma (APNTP) assisted co-polymerization and immobilization of chitosan for improvement of antifouling properties. Mater Sci Eng C 94:150–160

    Article  CAS  Google Scholar 

  13. Khoshnevisan K, Barkhi M, Ghasemzadeh A, Tahami HV, Pourmand S (2016) Fabrication of coated/uncoated magnetic nanoparticles to determine their surface properties. Mater Manuf Process 31:1206–1215

    Article  CAS  Google Scholar 

  14. Carli S, de Campos Carneiro LAB, Ward RJ, Meleiro LP (2019) Immobilization of a β-glucosidase and an endoglucanase in ferromagnetic nanoparticles: a study of synergistic effects. Protein Expr Purif 160:28–35

    Article  CAS  PubMed  Google Scholar 

  15. Zhang M, Zhang Y, Yang C, Ma C, Tang J (2021) Enzyme-inorganic hybrid nanoflowers: classification, synthesis, functionalization and potential applications. Chem. Eng. J. 415:129075

  16. Xu K, Chen X, Zheng R, Zheng Y (2020) Immobilization of multi-enzymes on support materials for efficient biocatalysis. Front Bioeng Biotechnol 8:1–17. https://doi.org/10.3389/fbioe.2020.00660

    Article  Google Scholar 

  17. Singh N, Dhanya BS, Verma ML (2020) Nano-immobilized biocatalysts and their potential biotechnological applications in bioenergy production. Mater. Sci. Energy Techno.l 3:808–824. https://doi.org/10.1016/j.mset.2020.09.006

  18. Madhavan A, Arun KB, Binod P, Sirohi R, Tarafdar A, Reshmy R, Kumar Awasthi M, Sindhu R (2021) Design of novel enzyme biocatalysts for industrial bioprocess: harnessing the power of protein engineering, high throughput screening and synthetic biology. Bioresour Technol 325:124617. https://doi.org/10.1016/j.biortech.2020.124617

    Article  CAS  PubMed  Google Scholar 

  19. Reshmy R, Philip E, Sirohi R, Tarafdar A, Arun KB, Madhavan A, Binod P, Kumar Awasthi M, Varjani S, Szakacs G, Sindhu R (2021) Nanobiocatalysts: advancements and applications in enzyme technology. Bioresour Technol 337:125491. https://doi.org/10.1016/j.biortech.2021.125491

    Article  CAS  PubMed  Google Scholar 

  20. Hashemabadi M, Badoei-Dalfard A (2019) Fabrication of magnetic CLEA-protease nanocomposite: high progression in biotechnology and protein waste management. Catal Lett 149:1753–1764. https://doi.org/10.1007/s10562-019-02751-5

    Article  CAS  Google Scholar 

  21. Dal Magro L, Silveira VCC, de Menezes EW, Benvenutti EV, Nicolodi S, Hertz PF, Klein MP, Rodrigues RC (2018) Magnetic biocatalysts of pectinase and cellulase: synthesis and characterization of two preparations for application in grape juice clarification. Int J Biol Macromol 115:35–44. https://doi.org/10.1016/j.ijbiomac.2018.04.028

    Article  CAS  Google Scholar 

  22. Deng X, He T, Li J, Duan HL, Zhang ZQ (2020) Enhanced biochemical characteristics of β-glucosidase via adsorption and cross-linked enzyme aggregate for rapid cellobiose hydrolysis. Bioprocess Biosyst Eng 43:2209–2217. https://doi.org/10.1007/s00449-020-02406-5

    Article  CAS  PubMed  Google Scholar 

  23. Ren S, Li C, Jiao X, Jia S, Jiang Y, Bilal M, Cui J (2019) Recent progress in multienzymes co-immobilization and multienzyme system applications. Chem Eng J 373:1254–1278. https://doi.org/10.1016/j.cej.2019.05.141

    Article  CAS  Google Scholar 

  24. Zanuso E, Gomes DG, Ruiz HA, Teixeira JA, Domingues L (2021) Enzyme immobilization as a strategy towards efficient and sustainable lignocellulosic biomass conversion into chemicals and biofuels: current status and perspectives. Sustain Energy Fuels 5(17):4233–4247

    Article  CAS  Google Scholar 

  25. Chakraborty S, Rusli H, Nath A, Sikder J, Bhattacharjee C, Curcio S, Drioli E (2016) Immobilized biocatalytic process development and potential application in membrane separation: a review. Crit Rev Biotechnol 36(1):43–58

    Article  CAS  PubMed  Google Scholar 

  26. Kim JH, Park S, Kim H, Kim HJ, Yang YH, Kim YH, Lee SH (2017) Alginate/bacterial cellulose nanocomposite beads prepared using Gluconacetobacter xylinus and their application in lipase immobilization. 157: Carbohydr. Polym. 137–145.

  27. Gao J, Lu CL, Wang Y, Wang SS, Shen JJ, Zhang JX, Zhang YW (2018) Rapid immobilization of cellulase onto graphene oxide with a hydrophobic spacer. Catalysts 8(5):180

    Article  Google Scholar 

  28. Mulinari J, Oliveira JV, Hotza D (2020) Lipase immobilization on ceramic supports: an overview on techniques and materials. Biotechnol. Adv. 42: 107581.

  29. Zhang D, Hegab HE, Lvov Y, Dale Snow L, Palmer J (2016) Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer. Springerplus 5(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  30. Qi B, Luo J, Wan Y (2018) Immobilization of cellulase on a core-shell structured metal-organic framework composites: better inhibitors tolerance and easier recycling. Bioresour Technol 268:577–582

    Article  CAS  PubMed  Google Scholar 

  31. Ingle AP, Rathod J, Pandit R, da Silva SS, Rai M (2017) Comparative evaluation of free and immobilized cellulase for enzymatic hydrolysis of lignocellulosic biomass for sustainable bioethanol production. Cellulose 24(12):5529–5540

    Article  CAS  Google Scholar 

  32. Ahmad R, Khare SK (2018) Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis. Bioresour Technol 252:72–75

    Article  CAS  PubMed  Google Scholar 

  33. Bhattacharya A, Pletschke BI (2014) Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes. Enzym Microb Technol 61:17–27

    Article  Google Scholar 

  34. Kumari A, Kaila P, Tiwari P, Singh V, Kaul S, Singhal N, Guptasarma P (2018) Multiple thermostable enzyme hydrolases on magnetic nanoparticles: an immobilized enzyme-mediated approach to saccharification through simultaneous xylanase, cellulase and amylolyticglucanotransferase action. Int J Biol Macromol 120:1650–1658

    Article  CAS  PubMed  Google Scholar 

  35. Mariño M, Moretti P, Tasic L (2021) Immobilized commercial cellulases onto amino-functionalized magnetic beads for biomass hydrolysis: enhanced stability by non-polar silanization. Biomass Conv. Bioref. 1–21.

  36. Shu C, Cai J, Huang L, Zhu X, Xu Z (2011) Biocatalytic production of ethyl butyrate from butyric acid with immobilized Candida rugosa lipase on cotton cloth. J Mol Catalysis B 72:139–144

    Article  CAS  Google Scholar 

  37. Moreno-Pirajan JC, Giraldo L (2011) Study of immobilized Candida rugosa lipase for biodiesel fuel production from palm oil by flow microcalorimetry. Arab J Chem 4:55–62

    Article  CAS  Google Scholar 

  38. Saha K, Verma P, Sikder J, Chakraborty S, Curcio S (2019) Synthesis of chitosan-cellulasenanohybrid and immobilization on alginate beads for hydrolysis of ionic liquid pretreated sugarcane bagasse. Renew Energy 133:66–76

    Article  CAS  Google Scholar 

  39. Bohara RA, Thorat ND, Pawar SH (2016) Immobilization of cellulase on functionalized cobalt ferrite nanoparticles. Korean J Chem Eng 33:216–222

    Article  CAS  Google Scholar 

  40. Priya GPR (2021) Ultrasound-assisted intensification of activity of free and immobilized enzymes: a review. Ind Eng Chem Res 60:9650–9668. https://doi.org/10.1021/acs.iecr.1c01217

    Article  CAS  Google Scholar 

  41. Bernal C, Rodríguez K, Martínez R (2018) Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel and improved industrial biocatalysts. Biotechnol Advances 36:1470–1480. https://doi.org/10.1016/j.biotechadv.2018.06.002

    Article  CAS  Google Scholar 

  42. Zang L, Qiao X, Hu L, Yang C, Liu Q, Wei C, Qiu J, Mo H, Song G, Yang J, Liu C (2018) Preparation and evaluation of coal fly ash/chitosan composites as magnetic supports for highly efficient cellulase immobilization and cellulose bioconversion. Polymers 10:1–12. https://doi.org/10.3390/polym10050523

    Article  CAS  Google Scholar 

  43. Kaushal J, Seema SG, Arya SK (2018) Immobilization of catalase onto chitosan and chitosan–bentonite complex: a comparative study. Biotechnol Reports 18:e00258. https://doi.org/10.1016/j.btre.2018.e00258

    Article  Google Scholar 

  44. Zang L, Qiu J, Wu X, Zhang W, Sakai E, Wei Y (2014) Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res 53:3448–3454. https://doi.org/10.1021/ie404072s

    Article  CAS  Google Scholar 

  45. Mo H, Qiu J, Yang C, Zang L, Sakai E, Chen J (2020) Porous biochar/chitosan composites for high performance cellulase immobilization by glutaraldehyde. Enzyme Microbial Technol 138:109561. https://doi.org/10.1016/j.enzmictec.2020.109561

    Article  CAS  Google Scholar 

  46. A Díaz-Hernández J Gracida BE García-Almendárez C Regalado R NúñezA Amaro-Reyes 2018 Characterization of magnetic nanoparticles coated with chitosan: a potential approach for enzyme immobilization J Nanomat 2018 https://doi.org/10.1155/2018/9468574

  47. Lin Y, Liu X, Xing Z, Geng Y, Wilson J, Wu D, Kong H (2017) Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles for cellulase immobilization. Cellulose 24:5541–5550. https://doi.org/10.1007/s10570-017-1520-6

    Article  CAS  Google Scholar 

  48. Pereira MB, Nogueira BL, Montano IDC, Rodrigues DDS, Galeano Suarez CA (2021) Immobilization of cellulases on chitosan: application for sugarcane bagasse hydrolysis. Cellulose Chem. Technol. 55:829–837. https://doi.org/10.35812/CELLULOSECHEMTECHNOL.2021.55.70

  49. Hamzah A, Sitompul LL, Putri INF, Soeprijanto, Widjaja A (2019) Synergistic effect of two type cellulase immobilized on chitosan microparticle as biocatalyst for coconut husk hydrolysis. Indonesian J. Chem. 19:495–502. https://doi.org/10.22146/ijc.39714

  50. Sánchez-Ramírez J, Martínez-Hernández JL, Segura-Ceniceros P, López G, Saade H, Medina-Morales MA, Ramos-González R, Aguilar CN, Ilyina A (2017) Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave atrovirens lignocellulosic biomass hydrolysis. Bioprocess Biosyst Eng 40:9–22. https://doi.org/10.1007/s00449-016-1670-1

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y, Chen JY (2016) Enzyme immobilization on cellulose matrixes. J Bioact Compat Polym 31:553–567. https://doi.org/10.1177/0883911516637377

    Article  CAS  Google Scholar 

  52. Wu X, Zhao F, Varcoe JR, Thumser AE, Avignone-Rossa C, Slade RCT (2009) Direct electron transfer of glucose oxidase immobilized in an ionic liquid reconstituted cellulose-carbon nanotube matrix. Bioelectrochem 77:64–68. https://doi.org/10.1016/j.bioelechem.2009.05.008

    Article  CAS  Google Scholar 

  53. Suo H, Xu L, Xue Y, Qiu X, Huang H, Hu Y (2020) Ionic liquids-modified cellulose coated magnetic nanoparticles for enzyme immobilization: improvement of catalytic performance. Carbohydr Polym 234:115914. https://doi.org/10.1016/j.carbpol.2020.115914

    Article  CAS  PubMed  Google Scholar 

  54. Motamedi E, Sadeghian Motahar SF, Maleki M, Kavousi K, Ariaeenejad S, Moosavi-Movahedi AA, Hosseini Salekdeh G (2021) Upgrading the enzymatic hydrolysis of lignocellulosic biomass by immobilization of metagenome-derived novel halotolerant cellulase on the carboxymethyl cellulose-based hydrogel. Cellulose 28:3485–3503. https://doi.org/10.1007/s10570-021-03727-8

    Article  CAS  Google Scholar 

  55. Tan L, Tan Z, Feng H, Qiu J (2018) Cellulose as a template to fabricate a cellulase-immobilized composite with high bioactivity and reusability. New J Chem 42:1665–1672. https://doi.org/10.1039/c7nj03271d

    Article  CAS  Google Scholar 

  56. Harmoko C, Sucipto KI, Retnoningtyas ES, Hartono SB (2016) Vinyl functionalized cubic mesoporous silica nanoparticles as supporting material to enhance cellulase enzyme stability. ARPN J Eng Appl Sci 11:2981–2992

    CAS  Google Scholar 

  57. Ejaz U, Sohail M, Ghanemi A (2021) Cellulases: from bioactivity to a variety of industrial applications. Biomimetics 6:1–11. https://doi.org/10.3390/biomimetics6030044

    Article  CAS  Google Scholar 

  58. Abbaszadeh M, Hejazi P (2019) Metal affinity immobilization of cellulase on Fe3O4 nanoparticles with copper as ligand for biocatalytic applications. Food Chem 290:47–55. https://doi.org/10.1016/j.foodchem.2019.03.117

    Article  CAS  PubMed  Google Scholar 

  59. Ladole MR, Mevada JS, Pandit AB (2017) Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles. Bioresour Technol 239:117–126. https://doi.org/10.1016/j.biortech.2017.04.096

    Article  CAS  PubMed  Google Scholar 

  60. Chen Q, Liu D, Wu C, Yao K, Li Z, Shi N, Wen F, Gates ID (2018) Co-immobilization of cellulase and lysozyme on amino-functionalized magnetic nanoparticles: an activity-tunable biocatalyst for extraction of lipids from microalgae. Bioresour Technol 263:317–324. https://doi.org/10.1016/j.biortech.2018.04.071

    Article  CAS  PubMed  Google Scholar 

  61. Ladole MR, Nair RR, Bhutada YD, Amritkar VD, Pandit AB (2018) Synergistic effect of ultrasonication and co-immobilized enzymes on tomato peels for lycopene extraction. Ultrason Sonochem 48:453–462. https://doi.org/10.1016/j.ultsonch.2018.06.013

    Article  CAS  PubMed  Google Scholar 

  62. Nadar SS, Rathod VK (2019) A co-immobilization of pectinase and cellulase onto magnetic nanoparticles for antioxidant extraction from waste fruit peels. Biocatal Agric Biotechnol 17:470–479. https://doi.org/10.1016/j.bcab.2018.12.015

    Article  Google Scholar 

  63. Ji L, Lei F, Zhang W, Song X, Jiang J, Wang K (2019) Enhancement of bioethanol production from Moso bamboo pretreated with biodiesel crude glycerol: substrate digestibility, cellulase absorption and fermentability. Bioresour Technol 276:300–309. https://doi.org/10.1016/j.biortech.2019.01.017

    Article  CAS  PubMed  Google Scholar 

  64. Grewal J, Ahmad R, Khare SK (2017) Development of cellulase-nanoconjugates with enhanced ionic liquid and thermal stability for in situ lignocellulose saccharification. Bioresour Technol 242:236–243. https://doi.org/10.1016/j.biortech.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  65. Jabasingh AS, Nachiyar VC (2012) Immobilization of Aspergillus nidulans SU04 cellulase on modified activated carbon: sorption and kinetic studies. J Therm Anal Calorim 109(1):193–202

    Article  Google Scholar 

  66. Zdarta J, Jędrzak A, Klapiszewski Ł, Jesionowski T (2017) Immobilization of cellulase on a functional inorganic–organic hybrid support: stability and kinetic study. Catalysts 7(12):374

    Article  Google Scholar 

  67. Duman YA, Tufan G, Kaya AU (2020) Immobilisation of cellulase on vermiculite and the effects on enzymatic kinetics and thermodynamics. Appl. Clay Sci. 197: 105792.

  68. Sirohi R, Pandey JP, Goel R, Singh A, Lohani UC, Kumar A (2021) Two-stage enzymatic hydrolysis for fermentable sugars production from damaged wheat grain starch with sequential process optimization and reaction kinetics. Starch-Stärke 73:2000082

    Article  CAS  Google Scholar 

  69. Zhang Y, Xu JL, Qi W, Yuan ZH, Zhuang XS, Liu Y, He MC (2012) A fractal-like kinetic equation to investigate temperature effect on cellulose hydrolysis by free and immobilized cellulase. Appl Biochem Biotechnol 168(1):144–153

    Article  CAS  PubMed  Google Scholar 

  70. Muley AB, Mulchandani KH, Singhal RS (2020) Immobilization of enzymes on iron oxide magnetic nanoparticles: synthesis, characterization, kinetics and thermodynamics. Meth Enzymol 630:39–79

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Collecting articles and writing original draft were performed by Reshmy R., Narisetty Vivek, and Ayon Tarafdar. Supervision, reviewing, and editing were done by all the other authors. Raveendran Sindhu performed the project administration and conceptualization. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Raveendran Sindhu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reshmy R., Vivek Narisetty, and Ayon Tarafdar contributed equally and co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R., R., Narisetty, V., Tarafdar, A. et al. An Overview of Cellulase Immobilization Strategies for Biofuel Production. Bioenerg. Res. 16, 4–15 (2023). https://doi.org/10.1007/s12155-022-10431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10431-3

Keywords

Navigation