Skip to main content

Advertisement

Log in

Current Prospects on Production of Microbial Lipid and Other Value-Added Products Using Crude Glycerol Obtained from Biodiesel Industries

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Production of microbial lipids using crude glycerol from the biodiesel industry is reviewed in this paper. Approximately 10 wt.% of crude glycerol is obtained for every batch of biodiesel. The crude glycerol accumulated contains various impurities and hence cannot be used for any commercial applications without further purification. Its conversion via biological and chemical routes into valuable products has been studied by different researchers. Varieties of fungal, yeasts, and algal species have been used to produce microbial lipids from crude glycerol. However, research focus on screening a robust industrial oleaginous strain capable of doing this is still on-going. Due to its chemical similarity to vegetable oils, microbial lipids are considered a potential renewable feedstock for biodiesel production and for applications in food and pharmaceutical industries. Its conversion to polyols and subsequently to biobased polymers is also being explored. The rising price of vegetable oils, increasing energy demands, growing environmental concerns, and availability of crude glycerol as a cheap carbon substrate result in considerable potential for the application of these processes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100:203–212. doi:10.1002/bit.21875

    Article  CAS  PubMed  Google Scholar 

  2. Uprety BK, Chaiwong W, Ewelike C, Rakshit SK (2016) Biodiesel production using heterogeneous catalysts including wood ash and the importance of enhancing byproduct glycerol purity. Energy Convers Manag 115:191–199. doi:10.1016/j.enconman.2016.02.032

    Article  CAS  Google Scholar 

  3. Uprety BK, Dalli SS, Rakshit SK (2017) Bioconversion of crude glycerol to microbial lipid using a robust oleaginous yeast Rhodosporidium toruloides ATCC 10788 capable of growing in the presence of impurities. Energy Convers Manag 135:117–128. doi:10.1016/j.enconman.2016.12.071

    Article  CAS  Google Scholar 

  4. Ardi MS, Aroua MK, Hashim NA (2015) Progress, prospect and challenges in glycerol purification process: a review. Renew Sust Energ Rev 42:1164–1173. doi:10.1016/j.rser.2014.10.091

    Article  CAS  Google Scholar 

  5. Sarma SJ, Brar SK, Sydney EB et al (2012) Microbial hydrogen production by bioconversion of crude glycerol: a review. Int J Hydrog Energy 37:6473–6490. doi:10.1016/j.ijhydene.2012.01.050

    Article  CAS  Google Scholar 

  6. Luo X, Ge X, Cui S, Li Y (2016) Value-added processing of crude glycerol into chemicals and polymers. Bioresour Technol 215:144–154. doi:10.1016/j.biortech.2016.03.042

    Article  CAS  PubMed  Google Scholar 

  7. Liang Y, Cui Y, Trushenski J, Blackburn JW (2010) Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresour Technol 101:7581–7586. doi:10.1016/j.biortech.2010.04.061

    Article  CAS  PubMed  Google Scholar 

  8. Garlapati VK, Shankar U, Budhiraja A (2016) Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol Rep 9:9–14. doi:10.1016/j.btre.2015.11.002

    Article  Google Scholar 

  9. Kong PS, Aroua MK, Daud WMAW (2016) Conversion of crude and pure glycerol into derivatives: a feasibility evaluation. Renew Sust Energ Rev 63:533–555. doi:10.1016/j.rser.2016.05.054

    Article  CAS  Google Scholar 

  10. Ngo TA, Kim MS, Sim SJ (2011) High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. Int J Hydrog Energy 36:5836–5842. doi:10.1016/j.ijhydene.2010.11.057

    Article  CAS  Google Scholar 

  11. Khanna S, Goyal A, Moholkar VS (2013) Production of n-butanol from biodiesel derived crude glycerol using Clostridium pasteurianum immobilized on Amberlite. Fuel 112:557–561. doi:10.1016/j.fuel.2011.10.071

    Article  CAS  Google Scholar 

  12. Duarte SH, de Andrade CCP, Ghiselli G, Maugeri F (2013) Exploration of Brazilian biodiversity and selection of a new oleaginous yeast strain cultivated in raw glycerol. Bioresour Technol 138:377–381. doi:10.1016/j.biortech.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  13. Liang Y, Sarkany N, Cui Y, Blackburn JW (2010) Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation. Bioresour Technol 101:6745–6750. doi:10.1016/j.biortech.2010.03.087

    Article  CAS  PubMed  Google Scholar 

  14. Choi HJ, Yu SW (2015) Influence of crude glycerol on the biomass and lipid content of microalgae. Biotechnol Biotechnol Equip 29:506–513. doi:10.1080/13102818.2015.1013988

    Article  CAS  Google Scholar 

  15. Christophe G, Kumar V, Nouaille R et al (2012) Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food? Braz Arch Biol Technol 55:29–46. doi:10.1590/S1516-89132012000100004

    Article  CAS  Google Scholar 

  16. Liang MH, Jiang JG (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408. doi:10.1016/j.plipres.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  17. Xu J, Zhao X, Wang W et al (2012) Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochem Eng J 65:30–36. doi:10.1016/j.bej.2012.04.003

    Article  CAS  Google Scholar 

  18. Nicol RW, Marchand K, Lubitz WD (2012) Bioconversion of crude glycerol by fungi. Appl Microbiol Biotechnol 93:1865–1875. doi:10.1007/s00253-012-3921-7

    Article  CAS  PubMed  Google Scholar 

  19. Tchakouteu SS, Kalantzi O, Gardeli C et al (2015) Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. J Appl Microbiol 118:911–927. doi:10.1111/jam.12736

    Article  CAS  PubMed  Google Scholar 

  20. Uçkun Kiran E, Trzcinski A, Webb C (2013) Microbial oil produced from biodiesel by-products could enhance overall production. Bioresour Technol 129:650–654. doi:10.1016/j.biortech.2012.11.152

    Article  PubMed  CAS  Google Scholar 

  21. Kitcha S, Cheirsilp B (2013) Enhancing lipid production from crude glycerol by newly isolated oleaginous yeasts: strain selection, process optimization, and fed-batch strategy. Bioenergy Res 6:300–310. doi:10.1007/s12155-012-9257-4

    Article  CAS  Google Scholar 

  22. Liu L, Hu Y, Lou W et al (2016) Use of crude glycerol as sole carbon source for microbial lipid production by oleaginous yeasts. Appl Biochem Biotechnol. doi:10.1007/s12010-016-2340-0

  23. André A, Diamantopoulou P, Philippoussis A et al (2010) Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crop Prod 31:407–416. doi:10.1016/j.indcrop.2009.12.011

    Article  CAS  Google Scholar 

  24. Leiva-Candia DE, Pinzi S, Redel-Macías MD et al (2014) The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel 123:33–42. doi:10.1016/j.fuel.2014.01.054

    Article  CAS  Google Scholar 

  25. Huang C, Chen X, Xiong L et al (2013) Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv 31:129–139. doi:10.1016/j.biotechadv.2012.08.010

    Article  CAS  PubMed  Google Scholar 

  26. Muniraj IK, Uthandi SK, Hu Z et al (2015) Microbial lipid production from renewable and waste materials for second-generation biodiesel feedstock. Environ Technol Rev 4:1–16. doi:10.1080/21622515.2015.1018340

    Article  CAS  Google Scholar 

  27. Martínez EJ, Raghavan V, González-Andrés F, Gómez X (2015) New biofuel alternatives: integrating waste management and single cell oil production. Int J Mol Sci 16:9385–9405. doi:10.3390/ijms16059385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zabeti M, Daud W, Aroua M (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90:770–777. doi:10.1016/j.fuproc.2009.03.010

    Article  CAS  Google Scholar 

  29. Guldhe A, Singh B, Mutanda T et al (2015) Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew Sust Energ Rev 41:1447–1464. doi:10.1016/j.rser.2014.09.035

    Article  CAS  Google Scholar 

  30. Bharathiraja B, Chakravarthy M, Kumar RR et al (2014) Biodiesel production using chemical and biological methods – a review of process, catalyst, acyl acceptor, source and process variables. Renew Sust Energ Rev 38:368–382. doi:10.1016/j.rser.2014.05.084

    Article  CAS  Google Scholar 

  31. Moser BR (2009) Biodiesel production, properties and feedstocks. Vitr Cell Dev Biol—Plant 45:229–266. doi:10.1007/s11627-009-9204-z

    Article  CAS  Google Scholar 

  32. Chakrabarti PP, Prasad RBN (2012) Biodiesel production from Jatropha curcas oil. In: Carels N, Sujatha M, Bahadur B (eds) Jatropha, challenges a new energy crop, vol 1. Springer Science & Business Media, New York, NY, p 482

    Google Scholar 

  33. Akoh CC, Chang SW, Lee GC, Shaw JF (2007) Enzymatic approach to biodiesel production. J Agric Food Chem 55:8995–9005. doi:10.1021/jf071724y

    Article  CAS  PubMed  Google Scholar 

  34. Joshi H, Toler J, Moser BR, Walker T (2009) Biodiesel from canola oil using a 1: 1 molar mixture of methanol and ethanol*. Eur J Lipid Sci Technol 111:464–473. doi:10.1002/ejlt.200800071

    Article  CAS  Google Scholar 

  35. Zhang Y, You H (2015) Study on biodiesel production from rapeseed oil through the orthogonal method. Energy Sources, Part A Recover Util Environ Eff 37:422–427. doi:10.1080/15567036.2011.576417

    Article  CAS  Google Scholar 

  36. Alkabbash AN, Alam MZ, Mirghani MES, Al-Fusaiel AMA (2009) Biodiesel production from crude palm oil by transesterification process. J Appl Sci 9:3166–3170. doi:10.3923/jas.2009.3166.3170

    Article  Google Scholar 

  37. Mata TM, Sousa IRBG, Vieira SS, Caetano NS (2012) Biodiesel production from corn oil via enzymatic catalysis with ethanol. Energy Fuel 26:3034–3041. doi:10.1021/ef300319f

    Article  CAS  Google Scholar 

  38. Sanchez F, Vasudevan PT (2006) Enzyme catalyzed production of biodiesel from olive oil. Appl Biochem Biotechnol 135:1–14

    Article  CAS  PubMed  Google Scholar 

  39. Indexmundi 2017 (2017) Commodity prices—price charts, data, and news—IndexMundi. In: Indexmundi. http://www.indexmundi.com/commodities/. Accessed 18 Feb 2017

  40. Canola 2017 (2017) Current canola oil, meal, and seed prices—canola council of Canada. In: Canola Counc. Canada. http://www.canolacouncil.org/markets-stats/statistics/current-canola-oil,-meal,-and-seed-prices/. Accessed 18 Feb 2017

  41. Meng X, Yang J, Xu X et al (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5. doi:10.1016/j.renene.2008.04.014

    Article  CAS  Google Scholar 

  42. Tan HW, Abdul Aziz AR, Aroua MK (2013) Glycerol production and its applications as a raw material: a review. Renew Sust Energ Rev 27:118–127. doi:10.1016/j.rser.2013.06.035

    Article  CAS  Google Scholar 

  43. Sunita G, Devassy BM, Vinu A et al (2008) Synthesis of biodiesel over zirconia-supported isopoly and heteropoly tungstate catalysts. Catal Commun. doi:10.1016/j.catcom.2007.08.007

  44. Freedman B, Pryde EH, Mounts TL (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61:1638–1643. doi:10.1007/BF02541649

    Article  CAS  Google Scholar 

  45. Ejikeme PM, Anyaogu ID, Ejikeme CL et al (2010) Catalysis in biodiesel production by transesterification process-an insight. E-J Chem 7:1120–1132. doi:10.1155/2010/689051

    Article  CAS  Google Scholar 

  46. Mosali R, Bobbili S (2011) Homogenous catalyst and effects on multifeedstock processing. In: Biodiesel Mag. http://www.biodieselmagazine.com/articles/7793/homogenous-catalyst-and-effects-on-multifeedstock-processing. Accessed 1 Mar 2017

  47. Lee JS, Saka S (2010) Biodiesel production by heterogeneous catalysts and supercritical technologies. Bioresour Technol 101:7191–7200. doi:10.1016/j.biortech.2010.04.071

    Article  CAS  PubMed  Google Scholar 

  48. Vyas AP, Verma JL, Subrahmanyam N (2010) A review on FAME production processes. Fuel 89:1–9. doi:10.1016/j.fuel.2009.08.014

    Article  CAS  Google Scholar 

  49. Liu X, He H, Wang Y et al (2008) Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87:216–221. doi:10.1016/j.fuel.2007.04.013

    Article  CAS  Google Scholar 

  50. Dossin TF, Reyniers M-F, Marin GB (2006) Kinetics of heterogeneously MgO-catalyzed transesterification. Appl Catal B Environ 62:35–45. doi:10.1016/j.apcatb.2005.04.005

    Article  CAS  Google Scholar 

  51. Alba-Rubio AC, Santamaría-González J, Mérida-Robles JM et al (2010) Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts. Catal Today 149:281–287. doi:10.1016/j.cattod.2009.06.024

    Article  CAS  Google Scholar 

  52. Zabeti M, Daud WMAW, Aroua MK (2010) Biodiesel production using alumina-supported calcium oxide: an optimization study. Fuel Process Technol 91:243–248. doi:10.1016/j.fuproc.2009.10.004

    Article  CAS  Google Scholar 

  53. Mbaraka IK, Shanks BH (2006) Conversion of oils and fats using advanced mesoporous heterogeneous catalysts. J Am Oil Chem Soc 83:79–91. doi:10.1007/s11746-006-1179-x

    Article  CAS  Google Scholar 

  54. Ilgen O, Akin AN (2009) Development of alumina supported alkaline catalysts used for biodiesel production. Turk J Chem 33:281–287. doi:10.3906/kim-0809-29

    CAS  Google Scholar 

  55. Bajaj A, Lohan P, Jha PN, Mehrotra R (2010) Biodiesel production through lipase catalyzed transesterification: an overview. J Mol Catal B Enzym 62:9–14. doi:10.1016/j.molcatb.2009.09.018

    Article  CAS  Google Scholar 

  56. Dizge N, Aydiner C, Imer DY et al (2009) Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer. Bioresour Technol 100:1983–1991. doi:10.1016/j.biortech.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  57. Gog A, Roman M, Toşa M et al (2012) Biodiesel production using enzymatic transesterification – current state and perspectives. Renew Energy 39:10–16. doi:10.1016/j.renene.2011.08.007

    Article  CAS  Google Scholar 

  58. Helwani Z, Othman MR, Aziz N et al (2009) Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Process Technol 90:1502–1514. doi:10.1016/j.fuproc.2009.07.016

    Article  CAS  Google Scholar 

  59. Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416. doi:10.1016/S1389-1723(01)80288-7

    Article  CAS  PubMed  Google Scholar 

  60. Sorda G, Banse M, Kemfert C (2010) An overview of biofuel policies across the world. Energy Policy 38:6977–6988. doi:10.1016/j.enpol.2010.06.066

    Article  Google Scholar 

  61. OECD-FAO (2016) OECD-FAO agricultural Outlook (edition 2016). OECD Agric Stat. doi: http://dx.doi.org/10.1787/60b7ee42-en

  62. Fox J (2017) World biodiesel production/consumption to rise 14% by 2020: OECD/FAO. In: S&P Glob. Platts. http://www.platts.com/latest-news/agriculture/london/world-biodiesel-productionconsumption-to-rise-26485632. Accessed 18 Feb 2017

  63. REN21 (2015) Renewables 2015-Global status report. REN21 Renewables. doi: 10.1016/0267–3649(88)90030-1

  64. Statista (2015) The world’s biggest biodiesel producers in 2015, by country (in billion liters). In: Stat. Stat. Portal. https://www.statista.com/statistics/271472/biodiesel-production-in-selected-countries/. Accessed 18 Feb 2017

  65. OECD (2016) OECD-FAO Agricultural Outlook 2016–2025. In: Stat Technol. http://stats.oecd.org/viewhtml.aspx?datasetcode=HIGH_AGLINK_2016&lang=en#. Accessed 18 Feb 2017

  66. Dessureault D (2016) Canada Biofuels Annual 2016

  67. Nanda M, Yuan Z, Qin W (2014) Purification of crude glycerol using acidification: effects of acid types and product characterization. Austin Chem Eng 1:1–7

    Google Scholar 

  68. Gholami Z, Abdullah AZ, Lee KT (2014) Dealing with the surplus of glycerol production from biodiesel industry through catalytic upgrading to polyglycerols and other value-added products. Renew Sust Energ Rev 39:327–341. doi:10.1016/j.rser.2014.07.092

    Article  CAS  Google Scholar 

  69. Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol Biofuels 5:13. doi:10.1186/1754-6834-5-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ciriminna R, Della Pina C, Rossi M, Pagliaro M (2014) Understanding the glycerol market. Eur J Lipid Sci Technol:1432–1439. doi:10.1002/ejlt.201400229

  71. Valerio O, Horvath T, Pond C et al (2015) Improved utilization of crude glycerol from biodiesel industries: synthesis and characterization of sustainable biobased polyesters. Ind Crop Prod 78:141–147. doi:10.1016/j.indcrop.2015.10.019

    Article  CAS  Google Scholar 

  72. Hansen CFA, Hernandez AA, Mullan BPB et al (2009) A chemical analysis of samples of crude glycerol from the production of biodiesel in Australia, and the effects of feeding crude glycerol to growing- finishing pigs on performance, plasma metabolites and meat quality at slaughter. Anim Prod Sci 49:154–161. doi:10.1071/EA08210

    Article  CAS  Google Scholar 

  73. Hu S, Luo X, Wan C, Li Y (2012) Characterization of crude glycerol from biodiesel plants. J Agric Food Chem 60:5915–5921. doi:10.1021/jf3008629

    Article  CAS  PubMed  Google Scholar 

  74. Xiao Y, Xiao G, Varma A (2013) A universal procedure for crude glycerol purification from different feedstocks in biodiesel production : experimental and simulation study. Ind Eng Chem Res 52:14291. doi:10.1021/ie402003u

    Article  CAS  Google Scholar 

  75. Chen YH, Walker TH (2011) Biomass and lipid production of heterotrophic microalgae Chlorella Protothecoides by using biodiesel-derived crude glycerol. Biotechnol Lett 33:1973–1983. doi:10.1007/s10529-011-0672-y

    Article  CAS  PubMed  Google Scholar 

  76. Ayoub M, Abdullah AZ (2012) Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew Sust Energ Rev 16:2671–2686. doi:10.1016/j.rser.2012.01.054

    Article  CAS  Google Scholar 

  77. Quispe CAG, Coronado CJR, Carvalho JA (2013) Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew Sust Energ Rev 27:475–493. doi:10.1016/j.rser.2013.06.017

    Article  CAS  Google Scholar 

  78. Thompson JC, He BB (2006) Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl Eng Agric 22:261–265

    Article  Google Scholar 

  79. Dasari M (2007) Crude glycerol potential described. Feedstuffs

  80. Mclea L, Ball MEE, Kilpatrick D, Elliott C (2011) The effect of glycerol inclusion on broiler performance and nutrient digestibility. Br Poult Sci 52:368–375. doi:10.1080/00071668.2011.584520

    Article  CAS  PubMed  Google Scholar 

  81. Cerrate S, Yan F, Wang Z et al (2006) Evaluation of glycerine from biodiesel production as a feed ingredient for broilers. Int J Poult Sci 5:1001–1007. doi:10.3923/ijps.2006.1001.1007

    Article  Google Scholar 

  82. Hassannia J (2011) Crude glycerol combustion system- introduction and commercialization plan

  83. Fan X, Burton R, Zhou Y (2010) Glycerol (byproduct of biodiesel production) as a source for fuels and chemicals – mini review. Open Fuels Energy Sci J 3:17–22. doi:10.2174/1876973X01003010017

    Article  CAS  Google Scholar 

  84. Fermoso J, He L, Chen D (2012) Production of high purity hydrogen by sorption enhanced steam reforming of crude glycerol. Int J Hydrog Energy 37:14047–14054. doi:10.1016/j.ijhydene.2012.07.084

    Article  CAS  Google Scholar 

  85. Sharma RV, Kumar P, Dalai AK (2014) Selective hydrogenolysis of glycerol to propylene glycol by using cu:Zn:Cr:Zr mixed metal oxides catalyst. Appl Catal A Gen 477:147–156. doi:10.1016/j.apcata.2014.03.007

    Article  CAS  Google Scholar 

  86. Cheng L, Liu L, Ye XP (2013) Acrolein production from crude glycerol in sub- and super-critical water. JAOCS, J Am Oil Chem Soc 90:601–610. doi:10.1007/s11746-012-2189-5

    Article  CAS  Google Scholar 

  87. Sullivan JA, Burnham S (2014) Title the selective oxidation of glycerol over model au/TiO2 catalysts -the influence of glycerol purity on conversion and product selectivity. Catal Commun. doi:10.1016/j.catcom.2014.06.026

  88. Gao Z, Ma Y, Wang Q et al (2016) Effect of crude glycerol impurities on lipid preparation by Rhodosporidium toruloides yeast 32489. Bioresour Technol 218:373–379. doi:10.1016/j.biortech.2016.06.088

    Article  CAS  PubMed  Google Scholar 

  89. Behera S, Singh R, Arora R et al (2015) Scope of algae as third generation biofuels. Front Bioeng Biotechnol 2:1–13. doi:10.3389/fbioe.2014.00090

    Article  Google Scholar 

  90. Wegenhart BL, Liu S, Thom M et al (2012) Solvent-free methods for making acetals derived from glycerol and furfural and their use as a biodiesel fuel component. ACS Catal 2:2524–2530. doi:10.1021/cs300562e

    Article  CAS  Google Scholar 

  91. Ilham Z, Saka S (2016) Esterification of glycerol from biodiesel production to glycerol carbonate in non-catalytic supercritical dimethyl carbonate. Spring 923. doi:10.1186/s40064-016-2643-1

  92. Chiu CW, Dasari MA, Sutterlin WR, Suppes GJ (2006) Removal of residual catalyst from simulated biodiesel’s crude glycerol for glycerol hydrogenolysis to propylene glycol. Ind Eng Chem Res 45:791–795. doi:10.1021/ie050915s

    Article  CAS  Google Scholar 

  93. Skrzyńska E, Wondołowska-Grabowska A, Capron M, Dumeignil F (2014) Crude glycerol as a raw material for the liquid phase oxidation reaction. Appl Catal A Gen 482:245–257. doi:10.1016/j.apcata.2014.06.005

    Article  CAS  Google Scholar 

  94. Zhu S, Zhu Y, Gao X et al (2013) Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids. Bioresour Technol 130:45–51. doi:10.1016/j.biortech.2012.12.011

    Article  CAS  PubMed  Google Scholar 

  95. Chetpattananondh P, Tongurai C (2008) Synthesis of high purity monoglycerides from crude glycerol and palm stearin. Songklanakarin J Sci Technol 30:515–521

    Google Scholar 

  96. Noureddini H, Dailey WR, Hunt BA (1998) Production of ethers of glycerol from crude glycerol - the by- product of biodiesel production. Pap Biomater 18

  97. Samul D, Leja K, Grajek W (2014) Impurities of crude glycerol and their effect on metabolite production. Ann Microbiol 64:891–898. doi:10.1007/s13213-013-0767-x

    Article  CAS  PubMed  Google Scholar 

  98. Papanikolaou S, Gortzi O, Margeli E et al (2008) Effect of citrus essential oil addition upon growth and cellular lipids of Yarrowia lipolytica yeast. Eur J Lipid Sci Technol 110:997–1006. doi:10.1002/ejlt.200800085

    Article  CAS  Google Scholar 

  99. Pyle DJ, Garcia RA, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933–3939. doi:10.1021/jf800602s

    Article  CAS  PubMed  Google Scholar 

  100. Ruhal R, Aggarwal S, Choudhury B (2011) Suitability of crude glycerol obtained from biodiesel waste for the production of trehalose and propionic acid. Green Chem 13:3492. doi:10.1039/c1gc15847c

    Article  CAS  Google Scholar 

  101. Wilkens E, Ringel AK, Hortig D et al (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93:1057–1063. doi:10.1007/s00253-011-3595-6

    Article  CAS  PubMed  Google Scholar 

  102. Kośmider A, Drozdzyńska A, Blaszka K et al (2010) Propionic acid production by Propionibacterium freudenreichii ssp. shermanii using crude glycerol and whey lactose industrial wastes. Pol J Environ Stud 19:1249–1253

    Google Scholar 

  103. Choi WJ, Hartono MR, Chan WH, Yeo SS (2011) Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens. Appl Microbiol Biotechnol 89:1255–1264. doi:10.1007/s00253-010-3076-3

    Article  CAS  PubMed  Google Scholar 

  104. Scholten E, Dagele D (2008) Succinic acid production by a newly isolated bacterium. Biotechnol Lett 30:2143–2146. doi:10.1007/s10529-008-9806-2

    Article  CAS  PubMed  Google Scholar 

  105. Mothes G, Schnorpfeil C, Ackermann JU (2007) Production of PHB from crude glycerol. Eng Life Sci 7:475–479. doi:10.1002/elsc.200620210

    Article  CAS  Google Scholar 

  106. Papanikolaou S, Fakas S, Fick M et al (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenergy 32:60–71. doi:10.1016/j.biombioe.2007.06.007

    Article  CAS  Google Scholar 

  107. Fakas S, Papanikolaou S, Batsos A et al (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33:573–580. doi:10.1016/j.biombioe.2008.09.006

    Article  CAS  Google Scholar 

  108. Tang S, Boehme L, Lam H, Zhang Z (2009) Pichia pastoris fermentation for phytase production using crude glycerol from biodiesel production as the sole carbon source. Biochem Eng J 43:157–162. doi:10.1016/j.bej.2008.09.020

    Article  CAS  Google Scholar 

  109. Pott RWM, Howe CJ, Dennis JS (2014) The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. Bioresour Technol 152:464–470. doi:10.1016/j.biortech.2013.10.094

    Article  CAS  PubMed  Google Scholar 

  110. Santibáñez C, Varnero MT, Bustamante M (2011) Residual glycerol from biodiesel manufacturing, waste or potential source of bioenergy: a review. Chil J Agric Res 71:469–475. doi:10.4067/S0718-58392011000300019

    Article  Google Scholar 

  111. Zhang X, Yan S, Tyagi RD et al (2016) Energy balance of biofuel production from biological conversion of crude glycerol. J Environ Manag 170:169–176. doi:10.1016/j.jenvman.2015.09.031

    Article  CAS  Google Scholar 

  112. Pawar MS, Kadam AS, Dawane BS, Yemul OS (2016) Synthesis and characterization of rigid polyurethane foams from algae oil using biobased chain extenders. Polym Bull 73:727–741. doi:10.1007/s00289-015-1514-1

    Article  CAS  Google Scholar 

  113. Petrović ZS, Wan X, Bilić O et al (2013) Polyols and polyurethanes from crude algal oil. JAOCS, J Am Oil Chem Soc 90:1073–1078. doi:10.1007/s11746-013-2245-9

    Article  CAS  Google Scholar 

  114. Uprety BK, Reddy JV, Dalli SS, Rakshit SK (2017) Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams. Bioresour Technol 235:309–315. doi:10.1016/j.biortech.2017.03.126

    Article  CAS  PubMed  Google Scholar 

  115. Azócar L, Ciudad G, Heipieper HJ, Navia R (2010) Biotechnological processes for biodiesel production using alternative oils. Appl Microbiol Biotechnol 88:621–636. doi:10.1007/s00253-010-2804-z

    Article  PubMed  CAS  Google Scholar 

  116. Garay LA, Boundy-Mills KL, German JB (2014) Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. J Agric Food Chem 62:2709–2727. doi:10.1021/jf4042134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Huerlimann R, de Nys R, Heimann K (2010) Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol Bioeng 107:245–257. doi:10.1002/bit.22809

    Article  CAS  PubMed  Google Scholar 

  118. Chi Z, Pyle D, Wen Z et al (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545. doi:10.1016/j.procbio.2007.08.008

    Article  CAS  Google Scholar 

  119. Ethier S, Woisard K, Vaughan D, Wen Z (2011) Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol 102:88–93. doi:10.1016/j.biortech.2010.05.021

    Article  CAS  PubMed  Google Scholar 

  120. Abad S, Turon X (2015) Biotechnological production of docosahexaenoic acid using Aurantiochytrium limacinum: carbon sources comparison and growth characterization. Mar Drugs 13:7275–7284. doi:10.3390/md13127064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756. doi:10.1007/s00253-008-1625-9

    Article  CAS  PubMed  Google Scholar 

  122. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232. doi:10.1016/j.rser.2009.07.020

    Article  CAS  Google Scholar 

  123. Hannon M, Gimpel J, Tran M et al (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784. doi:10.4155/bfs.10.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502. doi:10.1128/MMBR.67.4.491-502.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Strobel GA, Knighton B, Kluck K et al (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328. doi:10.1099/mic.0.2008/022186-0

    Article  CAS  PubMed  Google Scholar 

  126. Peng XW, Chen HZ (2007) Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Ann Microbiol 57:239–242. doi:10.1007/BF03175213

    Article  CAS  Google Scholar 

  127. McAfee BJ, Taylor A (1999) A review of the volatile metabolites of fungi found on wood substrates. Nat Toxins 7:283–303

    Article  CAS  PubMed  Google Scholar 

  128. Chatzifragkou A, Makri A, Belka A et al (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36:1097–1108. doi:10.1016/j.energy.2010.11.040

    Article  CAS  Google Scholar 

  129. Sisniega H, del Rio JL, Amaya MJ, Faus I (2005) Strategies for large-scale production of recombinant proteins in filamentous fungi. In: Barredo JL (ed) Microb Process Prod. Humana Press Inc., pp 225–237

  130. Butinar L, Spencer Martins I, Gunde Cimerman N (2007) Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. Antonie Van Leeuwenhoek 91:277–289. doi:10.1007/s10482-006-9117-3

    Article  PubMed  Google Scholar 

  131. Duarte SH, Ghiselli G, Maugeri F (2013) Influence of culture conditions on lipid production by Candida sp. LEB-M3 using glycerol from biodiesel synthesis. Biocatal Agric Biotechnol 2:339–343. doi:10.1016/j.bcab.2013.07.001

    Google Scholar 

  132. Makri A, Fakas S, Aggelis G (2010) Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour Technol 101:2351–2358. doi:10.1016/j.biortech.2009.11.024

    Article  CAS  PubMed  Google Scholar 

  133. Papanikolaou S, Muniglia L, Chevalot I et al (2002) Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol 92:737–744. doi:10.1046/j.1365-2672.2002.01577.x

    Article  CAS  PubMed  Google Scholar 

  134. Sabra W, Bommareddy RR, Maheshwari G et al (2017) Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: insights through transcriptome and fluxome analyses. Microb Cell Factories 16:78. doi:10.1186/s12934-017-0690-0

    Article  Google Scholar 

  135. Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82:43–49. doi:10.1016/S0960-8524(01)00149-3

    Article  CAS  PubMed  Google Scholar 

  136. Sara M, Brar SK, Blais JF (2016) Lipid production by Yarrowia lipolytica grown on biodiesel-derived crude glycerol: optimization of growth parameters and their effects on the fermentation efficiency doi: 10.1039/c6ra16382c

  137. Papanikolaou S, Rontou M, Belka A, et al (2016) Conversion of biodiesel-derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Eng Life Sci 0:1–20. doi: 10.1002/elsc.201500191

  138. Dedyukhina EG, Chistyakova TI, Mironov AA et al (2014) Arachidonic acid synthesis from biodiesel- derived waste by Mortierella alpina. Eur J Lipid Sci Technol 116:429–437. doi:10.1002/Ejlt.201300358

    Article  CAS  Google Scholar 

  139. Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553. doi:10.3390/en5051532

    Article  CAS  Google Scholar 

  140. Dong T, Knoshaug EP, Pienkos PT, Laurens LML (2016) Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review. Appl Energy 177:879–895. doi:10.1016/j.apenergy.2016.06.002

    Article  CAS  Google Scholar 

  141. Suutari M, Leskinen E, Fagerstedt K et al (2015) Macroalgae in biofuel production. Phycol Res 63:1–18. doi:10.1111/pre.12078

    Article  CAS  Google Scholar 

  142. Hamilton ML, Warwick J, Terry A et al (2015) Towards the industrial production of omega-3 long chain polyunsaturated fatty acids from a genetically modified diatom Phaeodactylum tricornutum. PLoS One 10:e0144054. doi:10.1371/journal.pone.0144054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Adarme-Vega T, Lim DKY, Timmins M et al (2012) Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Factories 11:96. doi:10.1186/1475-2859-11-96

    Article  CAS  Google Scholar 

  144. Uprety BK, Rakshit SK (2017) Compositional shift in fatty acid profiles of lipids obtained from oleaginous yeasts upon the addition of essential oil from Citrus sinensis L. Appl Biochem Biotechnol 1–15. doi: 10.1007/s12010-017-2490-8

  145. Moustogianni A, Bellou S, Triantaphyllidou I, Aggelis G (2014) Alterations in fatty acid composition of Cunninghamella echinulata lipids induced by orange essential oil. Environ Biotechnol 10:1–7. doi:10.14799/ebms237

    Article  Google Scholar 

  146. Chatzifragkou A, Petrou I, Gardeli C et al (2011) Effect of Origanum vulgare L. essential oil on growth and lipid profile of Yarrowia lipolytica cultivated on glycerol-based media. J Am Oil Chem Soc 88:1955–1964. doi:10.1007/s11746-011-1870-4

    Article  CAS  Google Scholar 

  147. Beopoulous A, Verbeke J, Bordes F et al (2014) Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 98:251–262. doi:10.1007/s00253-013-5295-x

    Article  CAS  Google Scholar 

  148. Xue Z, Sharpe PL, Hong S-P et al (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31:734–740. doi:10.1038/nbt.2622

    Article  CAS  PubMed  Google Scholar 

  149. Zhu Q, Jackson EN (2015) Metabolic engineering of Yarrowia lipolytica for industrial applications. Curr Opin Biotechnol 36:65–72. doi:10.1016/j.copbio.2015.08.010

    Article  PubMed  CAS  Google Scholar 

  150. Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9. doi:10.1016/j.ymben.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  151. Poli JS, da Silva MAN, Siqueira EP et al (2014) Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: a potential feedstock for biodiesel production. Bioresour Technol 161:320–326. doi:10.1016/j.biortech.2014.03.083

    Article  CAS  PubMed  Google Scholar 

  152. Duarte SH, Hernandez GL, Canet A et al (2015) Enzymatic biodiesel synthesis from yeast oil using immobilized recombinant Rhizopus oryzae lipase. Bioresour Technol 183:175–180. doi:10.1016/j.biortech.2015.01.133

    Article  CAS  PubMed  Google Scholar 

  153. Schlagermann P, Göttlicher G, Dillschneider R et al (2012) Composition of algal oil and its potential as biofuel. J Combust. doi:10.1155/2012/285185

  154. Sakthivel R, Elumalai S, Mohommad Arif M (2011) Microalgae lipid research, past, present: a critical review for biodiesel production, in the future. J Exp Sci 2:29–49

    Google Scholar 

  155. Zhu LD, Li ZH, Hiltunen E (2016) Strategies for lipid production improvement in microalgae as a biodiesel feedstock. Biomed Res Int 2016:1–8. doi:10.1155/2016/8792548

    CAS  Google Scholar 

  156. Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. doi:10.1111/j.1365-313X.2008.03492.x

    Article  CAS  PubMed  Google Scholar 

  157. Klug L, Daum G, G D, et al (2014) Yeast lipid metabolism at a glance. FEMS Yeast Res 14:369–388. doi: 10.1111/1567-1364.12141

  158. Abghari A, Chen S (2014) Yarrowia lipolytica as an oleaginous cell factory platform for production of fatty acid-based biofuel and bioproducts. Front Energy Res 2:1–21. doi:10.3389/fenrg.2014.00021

    Article  Google Scholar 

  159. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815. doi:10.1016/j.biochi.2004.09.017

    Article  CAS  PubMed  Google Scholar 

  160. Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51. doi:10.1016/S0065-2164(02)51000-5

    Article  CAS  PubMed  Google Scholar 

  161. Papanikolaou S, Beopoulos A, Koletti A et al (2013) Importance of the methyl-citrate cycle on glycerol metabolism in the yeast Yarrowia lipolytica. J Biotechnol 168:303–314. doi:10.1016/j.jbiotec.2013.10.025

    Article  CAS  PubMed  Google Scholar 

  162. Sorger D, Daum G (2003) Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol 61:289–299. doi:10.1007/s00253-002-1212-4

    Article  CAS  PubMed  Google Scholar 

  163. Czabany T, Athenstaedt K, Daum G (2007) Synthesis, storage and degradation of neutral lipids in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 1771:299–309. doi:10.1016/j.bbalip.2006.07.001

    Article  CAS  Google Scholar 

  164. Rajakumari S, Grillitsch K, Daum G (2008) Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res 47:157–171. doi:10.1016/j.plipres.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  165. Papanikolaou S, Aggelis G (2010) Yarrowia lipolytica: a model microorganism used for the production of tailor-made lipids. Eur J Lipid Sci Technol 112:639–654. doi:10.1002/ejlt.200900197

    Article  CAS  Google Scholar 

  166. Ochsenreither K, Glück C, Stressler T et al (2016) Production strategies and applications of microbial single cell oils. Front Microbiol 7:1539. doi:10.3389/fmicb.2016.01539

    Article  PubMed  PubMed Central  Google Scholar 

  167. Heim A, Kamionowska U, Solecki M (2007) The effect of microorganism concentration on yeast cell disruption in a bead mill. J Food Eng 83:121–128. doi:10.1016/j.jfoodeng.2007.02.047

    Article  Google Scholar 

  168. Spiden EM, Scales PJ, Kentish SE, Martin GJO (2013) Critical analysis of quantitative indicators of cell disruption applied to Saccharomyces cerevisiae processed with an industrial high pressure homogenizer. Biochem Eng J 70:120–126. doi:10.1016/j.bej.2012.10.008

    Article  CAS  Google Scholar 

  169. Wang M, Yuan W (2015) Microalgal cell disruption in a high-power ultrasonic flow system. Bioresour Technol 193:171–177. doi:10.1016/j.biortech.2015.06.040

    Article  CAS  PubMed  Google Scholar 

  170. Rakesh S, Dhar DW, Prasanna R et al (2015) Cell disruption methods for improving lipid extraction efficiency in unicellular microalgae. Eng Life Sci 15:443–447. doi:10.1002/elsc.201400222

    Article  CAS  Google Scholar 

  171. Guldhe A, Singh B, Rawat I et al (2014) Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. Fuel 128:46–52. doi:10.1016/j.fuel.2014.02.059

    Article  CAS  Google Scholar 

  172. Kakkad H, Khot M, Zinjarde S, RaviKumar A (2015) Biodiesel production by direct in situ transesterification of an oleaginous tropical mangrove fungus grown on untreated agro-residues and evaluation of its fuel properties. BioEnergy Res 8:1788–1799. doi:10.1007/s12155-015-9626-x

    Article  CAS  Google Scholar 

  173. Jin G, Yang F, Hu C et al (2012) Enzyme-assisted extraction of lipids directly from the culture of the oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 111:378–382. doi:10.1016/j.biortech.2012.01.152

    Article  CAS  PubMed  Google Scholar 

  174. White PM, Potter TL, Strickland TC (2009) Pressurized liquid extraction of soil microbial phospholipid and neutral lipid fatty acids. J Agric Food Chem 57:7171–7177. doi:10.1021/jf901257n

    Article  CAS  PubMed  Google Scholar 

  175. Walker TH, Cochran HD, Hulbert GJ (1999) Supercritical carbon dioxide extraction of lipids from Pythium irregulare. J Am Oil Chem Soc 76:595–602. doi:10.1007/s11746-999-0009-3

    Article  CAS  Google Scholar 

  176. Iverson SJ, Lang SL, Cooper MH (2001) Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36:1283–1287. doi:10.1007/s11745-001-0843-0

    Article  CAS  PubMed  Google Scholar 

  177. Manirakiza P, Covaci A, Schepens P (2001) Comparative study on total lipid determination using soxhlet, Roese-Gottlieb, Bligh & Dyer, and modified Bligh & Dyer extraction methods. J Food Compos Anal 14:93–100. doi:10.1006/jfca.2000.0972

    Article  CAS  Google Scholar 

  178. Dai C, Tao J, Xie F et al (2007) Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. Afr J Biotechnol 6:2130–2134

    Article  CAS  Google Scholar 

  179. Li Y, Naghdi FG, Garg S et al (2014) A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb Cell Factories 13:1–9. doi:10.1186/1475-2859-13-14

    Article  CAS  Google Scholar 

  180. Prommuak C, Pavasant P, Quitain AT et al (2012) Microalgal lipid extraction and evaluation of single-step biodiesel production. Eng J 16:26–27. doi:10.4186/ej.2012.16.5.157

    Article  Google Scholar 

  181. Folch J, Lees M, Sloan Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  182. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37

  183. Axelsson M, Gentili F (2014) A single-step method for rapid extraction of total lipids from green microalgae. PLoS One 9:17–20. doi:10.1371/journal.pone.0089643

    Article  CAS  Google Scholar 

  184. Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 46:210–218. doi:10.1016/j.procbio.2010.08.009

    Article  CAS  Google Scholar 

  185. Athalye SK, Garcia RA, Wen Z (2009) Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. J Agric Food Chem 57:2739–2744. doi:10.1021/jf803922w

    Article  CAS  PubMed  Google Scholar 

  186. Swanson D, Block R, Mousa SA (2012) Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr An Int Rev J 3:1–7. doi:10.3945/an.111.000893

    Article  CAS  Google Scholar 

  187. Kojima Y, Parcell J, Cain J (2016) A global demand analysis of vegetable oils for food and industrial use: a cross-country panel data analysis with spatial econometrics. In: Agric. Appl. Econ. Assoc. Boston, pp 0–27

  188. Lane J (2016) Biofuels mandates around the world: 2016. BiofuelsDigest 1–10

  189. Koutinas AA, Chatzifragkou A, Kopsahelis N et al (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116:566–577. doi:10.1016/j.fuel.2013.08.045

    Article  CAS  Google Scholar 

  190. Neste Oil 2012 Neste Oil inaugurates Europe’s first pilot plant for producing microbial oil from waste and residues | Neste https://www.neste.com/en/neste-oil-inaugurates-europes-first-pilot-plant-producing-microbial-oil-waste-and-residues. Accessed 22 Feb 2017

  191. Algoil 2017 British Algoil-Our Technology http://www.britishalgoil.com/our-technology. Accessed 22 Feb 2017

  192. Buggypower 2017 Buggypower-Microalgae life creators http://www.buggypower.eu/index.php?lang=en. Accessed 22 Feb 2017

  193. Pondtech 2017 Pond Technologies Inc http://pondtechnologiesinc.com/. Accessed 22 Feb 2017

  194. Algaeneers 2015 Products and benefits http://algae.io/products-and-benefits/. Accessed 22 Feb 2017

  195. Algaefarms 2017 Algae Farms/Greece: Company Profile https://www.bloomberg.com/profiles/companies/1040821D:GA-algae-farms/greece. Accessed 22 Feb 2017

  196. Sapphire 2016 Sapphire Energy, Inc http://www.sapphireenergy.com/. Accessed 22 Feb 2017

  197. Xu J, Du W, Zhao X et al (2013) Microbial oil production from various carbon sources and its use for biodiesel preparation. Biofuels Bioprod Biorefin 7:65–77. doi:10.1002/bbb.1372

    Article  CAS  Google Scholar 

  198. Cao Y, Liu W, Xu X et al (2014) Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli. Biotechnol Biofuels 7:59. doi:10.1186/1754-6834-7-59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Shimada H, Kondo K, Fraser PD et al (1998) Increased carotenoid production by the food yeast Candida Utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64:2676–2680

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhu Z, Zhang S, Liu H et al (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112. doi:10.1038/ncomms2112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Pfleger BF, Gossing M, Nielsen J (2015) Metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 29:1–11. doi:10.1016/j.ymben.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  202. Lee JJL, Chen L, Shi J et al (2014) Metabolomic profiling of Rhodosporidium toruloides grown on glycerol for carotenoid production during different growth phases. J Agric Food Chem 62:10203–10209. doi:10.1021/jf502987q

    Article  CAS  PubMed  Google Scholar 

  203. Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051. doi:10.1002/ejlt.201100014

    Article  CAS  Google Scholar 

  204. Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37:1271–1287. doi:10.1007/s10295-010-0884-5

    Article  CAS  PubMed  Google Scholar 

  205. Bruton T, Lyons H, Lerat Y, et al (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Dublin

  206. Thevenieau F, Nicaud JM (2013) Microorganisms as sources of oils. OCL 20:D603. doi:10.1051/ocl/2013034

    Article  Google Scholar 

  207. Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20:155–160. doi:10.1002/lite.200800044

    Article  Google Scholar 

  208. Soccol CR, Dalmas Neto CJ, Soccol VT et al (2017) Pilot scale biodiesel production from microbial oil of Rhodosporidium toruloides DEBB 5533 using sugarcane juice: performance in diesel engine and preliminary economic study. Bioresour Technol 223:259–268. doi:10.1016/j.biortech.2016.10.055

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by Natural Sciences and Engineering Research Council of Canada (NSERC; Grant Number 00017), Canada Foundation of Innovation (CFI), and Ministry of Research and Innovation, Ontario Research Matching Fund (Grant Number 226965).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip K. Rakshit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uprety, B.K., Venkatesagowda, B. & Rakshit, S.K. Current Prospects on Production of Microbial Lipid and Other Value-Added Products Using Crude Glycerol Obtained from Biodiesel Industries. Bioenerg. Res. 10, 1117–1137 (2017). https://doi.org/10.1007/s12155-017-9857-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-017-9857-0

Keywords

Navigation