Skip to main content
Log in

Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Although there are numerous oleochemical applications for ricinoleic acid (RA) and its derivatives, their production is limited and subject to various safety legislations. In an effort to produce RA from alternative sources, we constructed a genetically modified strain of the oleaginous yeast Yarrowia lipolytica. This strain is unable to perform β-oxidation and is invalidated for the native triacylglycerol (TAG) acyltransferases (Dga1p, Dga2p, and Lro1p) and the ∆12 desaturase (Fad2p). We also expressed the Ricinus communis ∆12 hydroxylase (RcFAH12) under the control of the TEF constitutive promoter in this strain. However, RA constituted only 7 % of the total lipids produced by this modified strain. By contrast, expression of the Claviceps purpurea hydroxylase CpFAH12 in this background resulted in a strain able to accumulate RA to 29 % of total lipids, and expression of an additional copy of CpFAH12 drove RA accumulation up to 35 % of total lipids. The co-expression of the C. purpurea or R. communis type II diacylglycerol acyltransferase (RcDGAT2 or CpDGAT2) had negative effects on RA accumulation in this yeast, with RA levels dropping to below 14 % of total lipids. Overexpression of the native Y. lipolytica PDAT acyltransferase (Lro1p) restored both TAG accumulation and RA levels. Thus, we describe the consequences of rerouting lipid metabolism in this yeast so as to develop a cell factory for RA production. The engineered strain is capable of accumulating RA to 43 % of its total lipids and over 60 mg/g of cell dry weight; this is the most efficient production of RA described to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Athenstaedt K, Jolivet P, Boulard C, Zivy M, Negroni L, Nicaud JM, Chardot T (2006) Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics 6:1450–1459

    Article  CAS  PubMed  Google Scholar 

  • Bafor M, Smith MA, Jonsson L, Stobart K, Stymne S (1991) Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm. Biochem J 280:507–514

    CAS  PubMed  Google Scholar 

  • Barth G, Gaillardin C (1996) Yarrowia lipolytica. In: Wolf K (ed) Non conventional yeasts in biotechnology, vol 1. Springer, Berlin, pp 313–388

    Chapter  Google Scholar 

  • Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74:7779–7789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387

    Article  CAS  PubMed  Google Scholar 

  • Beopoulos A, Nicaud JM, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90:1193–1206

    Article  CAS  PubMed  Google Scholar 

  • Beopoulos A, Haddouche R, Kabran P, Dulermo T, Chardot T, Nicaud JM (2012) Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-coA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts. Appl Microbiol Biotechnol 93:1523–1537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Broadwater JA, Whittle E, Shanklin J (2002) Desaturation and hydroxylation- residues 148 and 324 of Arabidopsis fad2, in addition to substrate chain length, exert a major influence in partitioning of catalytic specificity. J Biol Chem 277:15613–15620

    Article  CAS  PubMed  Google Scholar 

  • Broun P, Somerville C (1997) Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol 113:933–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Broun P, Shanklin J, Whittle E, Somerville C (1998) Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science 282:1315–131

    Article  CAS  PubMed  Google Scholar 

  • Browse J, McCourt PJ, Somerville CR (1986) Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem 152:141–145

    Article  CAS  PubMed  Google Scholar 

  • Burgal J, Shockey J, Lu C, Dyer J, Larson T, Graham I, Browse J (2008) Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol J 6:819–831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cahoon EB, Dietrich CR, Meyer K, Damude HG, Dyer JM, Kinney AJ (2006) Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochemistry 67:1166–1176

    Article  CAS  PubMed  Google Scholar 

  • Cescut J (2009) Accumulation d’acylglycérols par des espèces levuriennes à usage carburant aéronautique: physiologie et performances de procédés. Dissertation, Université de Toulouse

  • Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G, Cahoon EB, Gedil M, Stanke M, Haas BJ, Wortman JR, Fraser-Liggett CM, Ravel J, Rabinowicz PD (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen GQ, Turner C, He X, Nguyen T, McKeon TA, Laudencia-Chingcuanco D (2007) Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in castor bean (Ricinus communis L.). Lipids 42(3):263–274

    Article  CAS  PubMed  Google Scholar 

  • da Silva NL, Maciel MR, Batistella CB, Maciel Filho R (2006) Optimization of biodiesel production from castor oil. Appl Biochem Biotechnol 129–132:405–414

    Article  Google Scholar 

  • Dahlke B, Hellbardt S, Paetow M, Zech WH (1995) Polyhydroxy fatty acids and their derivatives from plant oils. JAOCS 72:349–353

    CAS  Google Scholar 

  • Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U S A 97:6487–6492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dear S, Staden R (1991) A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res 19:3907–3911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dulermo T, Nicaud JM (2011) Involvement of the G3P shuttle and beta-oxidation pathway in the control of tag synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 13:482–491

    Article  CAS  PubMed  Google Scholar 

  • Fickers P, Le Dall MT, Gaillardin C, Thonart P, Nicaud JM (2003) New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods 55:727–737

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Gaillardin C, Ribet AM, Heslot H (1985) Integrative transformation of the yeast Yarrowia lipolytica. Curr Genet 10:49–58

    Article  CAS  Google Scholar 

  • Holic R, Yazawa H, Kumagai H, Uemura H (2012) Engineered high content of ricinoleic acid in fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 95:179–187

    Article  CAS  PubMed  Google Scholar 

  • Ichihara K, Takahashi T, Fujii S (1988) Diacylglycerol acyltransferase in maturing safflower seeds: its influences on the fatty acid composition of triacylglycerol and on the rate of triacylglycerol synthesis. Biochim Biophys Acta 958:125–129

    Article  CAS  PubMed  Google Scholar 

  • Knight B (1979) Ricin—a potent homicidal poison. Br Med J 1(6159):350–351

    CAS  PubMed  Google Scholar 

  • Li R, Yu K, Hildebrand DF (2010) DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids 45:145–157

    Article  PubMed  Google Scholar 

  • Lu C, Fulda M, Wallis JG, Browse J (2006) A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis. Plant J 45:847–856

    Article  CAS  PubMed  Google Scholar 

  • Mavraganis I, Meesapyodsuk D, Vrinten P, Smith M, Qiu X (2010) Type-II diacylglycerol acyltransferase from Claviceps purpurea with ricinoleic acid, a hydroxyl fatty acid of industrial importance, as preferred substrate. Appl Environ Microbiol 76:1135–1142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meesapyodsuk D, Qiu X (2008) An oleate hydroxylase from the fungus Claviceps purpurea: cloning, functional analysis, and expression in Arabidopsis. Plant Physiol 147:1325–1333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mlickova K, Roux E, Athenstaedt K, d’Andrea S, Daum G, Chardot T, Nicaud JM (2004) Lipid accumulation, lipid body formation, and acyl coenzyme-A oxidases of the yeast Yarrowia lipolytica. Appl Environ Microbiol 70:3918–3924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muller S, Sandal T, Kamp-Hansen P, Dalboge H (1998) Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis. Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14:1267–1283

    Article  CAS  PubMed  Google Scholar 

  • Napier JA (2007) The production of unusual fatty acids in transgenic plants. Ann Rev Plant Biol 58:295–319

    Article  CAS  Google Scholar 

  • Napier JA, Graham IA (2010) Tailoring plant lipid composition: designer oilseeds come of age. Curr Opin Plant Biol 13:1–8

    Article  Google Scholar 

  • Nicaud JM, Madzak C, van den Broek P, Gysler C, Duboc P, Niederberger P, Gaillardin C (2002) Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res 2:371–379

    CAS  PubMed  Google Scholar 

  • Querol A, Barrio E, Huerta T, Ramon D (1992) Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl Environ Microbiol 58:2948–2953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  PubMed  Google Scholar 

  • Rupcic J, Blagovic B, Maric V (1996) Cell lipids of the Candida lipolytica yeast grown on methanol. J Chromatogr A 755:75–80

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Maniatis T, Fritsch EF (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Schrader J, Etschmann MM, Sell D, Hilmer JM, Rabenhorst J (2004) Applied biocatalysis for the synthesis of natural flavour compounds—current industrial processes and future prospects. Biotechnol Lett 26:463–472

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Zhou XR, Liu Q, Stymne S, Green AG (2005) Metabolic engineering of new fatty acids in plants. Curr Opin Plant Biol 8:197–203

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Moon H, Chowrira G, Kunst L (2003) Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana. Planta 217:507–516

    Article  CAS  PubMed  Google Scholar 

  • Snyder CL, Yurchenko OP, Siloto RMP, Chen X, Liu Q, Mietkiewska E (2009) Acyltransferase action in the modification of seed oil biosynthesis. New Biotechnol 26:11–16

    Article  CAS  Google Scholar 

  • van de Loo F, Broun P, Turner S, Somerville C (1995) An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proc Natl Acad Sci 92:6743–6747

    Article  PubMed  Google Scholar 

  • van Erp H, Bates PD, Burgal J, Shockey J, Browse J (2011) Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis. Plant Physiol 15:683–693

    Article  Google Scholar 

  • Vogel G, Browse J (1996) Cholinephosphotransferase and diacylglycerol acyltransferase (substrate specificities at a key branch point in seed lipid metabolism). Plant Physiol 110:923–931

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang HJ, Le Dall MT, Waché Y, Laroche C, Belin JM, Gaillardin C, Nicaud JM (1999) Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n-alkane-assimilating yeast Yarrowia lipolytica. J Bacteriol 181:5140–5148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto K, Kinoshita A, Shibahara A (2008) Ricinoleic acid in common vegetable oils and oil seeds. Lipids 43:457–460

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A. Beopoulos and J. Verbeke were supported by INRA. F. Bordes and M. Bressy were supported by INSA. This work was financially supported by DGCIS, Conseil Régional Midi-Pyrénées, and FEDER funding within the frame of the French national FUI project OLEOVISION.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Nicaud.

Additional information

A. Beopoulos, J. Verbeke, and F. Bordes contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beopoulos, A., Verbeke, J., Bordes, F. et al. Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica . Appl Microbiol Biotechnol 98, 251–262 (2014). https://doi.org/10.1007/s00253-013-5295-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5295-x

Keywords

Navigation