Skip to main content

Advertisement

Log in

Valorization of Hemicelluloses: Production of Bioxylitol from Poplar Wood Prehydrolyzates by Candida guilliermondii FTI 20037

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In this study on the valorization of hemicelluloses (a co-product generated during cellulosic bioethanol production), prehydrolyzates obtained from poplar woodchips pretreated in an industrial experimental steam-explosion pilot-plant facility were evaluated for the production of bioxylitol using the yeast, Candida guilliermondii FTI 20037, employing both batch and fed-batch fermentation modes in shake flasks on defined nutrient medium. The prehydrolyzates consisted of monosaccharides (pentose and hexose sugars) as well as xylo-oligosaccharides and undegraded hemicellulose. Xylose (31.6 ± 0.57 g/L) was the major sugar in the prehydrolyzates that also contained acetic acid and degradation products of lignin and sugars (phenolic and furanic compounds). Xylose in the prehydrolyzates could be further increased (106.4 ± 0.02 g/L) through an acid hydrolysis step (0.6 % (w/v) H2SO4). Compounds of a toxic nature in both the acid hydrolyzates and prehydrolyzates were removed by treatment with Amberlite IRA-400 resin (chloride form). Batch fermentation of pure xylose and poplar prehydrolyzate resulted in bioxylitol production of 9.9 ± 0.01 and 4.9 ± 0.17 g/L, respectively, indicating that the poplar prehydrolyzates exhibited an inhibitory effect on fermentation. After detoxification of the poplar prehydrolyzates, bioxylitol production increased to 8.9 ± 0.01 g/L. Fed-batch fermentation of the prehydrolyzate increased the bioxylitol production to 12.39 ± 0.33 g/L, while acid hydrolysis followed by detoxification resulted in a maximum bioxylitol production of 22.0 ± 0.01 g/L, a 348 % increase. The results demonstrated that acid hydrolysis and detoxification followed by fed-batch fermentation was an efficient way to produce bioxylitol from poplar prehydrolyzates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Devappa RK, Rakshit SK, Dekker RF (2015) Forest biorefinery: potential of poplar phytochemicals as value-added co-products. Biotechnol Adv 33:681–716

    Article  CAS  PubMed  Google Scholar 

  2. Etchells JP, Mishra LS, Kumar M, Campbell L, Turner SR (2015) Wood formation in trees is increased by manipulating PXY-regulated cell division. Curr Biol 25:1050–1055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Sannigrahi P, Ragauskas AJ, Tuskan GA (2010) Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioprod Bioref 4:209–226

    Article  CAS  Google Scholar 

  4. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low cost cellulosic ethanol. Biofuel Bioprod Bioref 2:26–40

    Article  CAS  Google Scholar 

  5. Li J, Gellerstedt G, Toven K (2009) Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresour Technol 100:2556–2561

    Article  CAS  PubMed  Google Scholar 

  6. Avellar BK, Glasser WG (1998) Steam-assisted biomass fractionation. I. Process considerations and economic evaluation. Biomass Bioenergy 14:205–218

    Article  CAS  Google Scholar 

  7. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

  8. Devappa RK, Rakshit SK, Dekker RF (2015) Potential of poplar bark phytochemicals as value-added co-products from the wood and cellulosic bioethanol industry. Bioenerg Res 8:1235–1251

  9. Vithanage LNG, Barbosa AM, Borsato D, Dekker RFH (2015) Value adding of poplar hemicellulosic prehydrolyzates: laccase production by Botryosphaeria rhodina MAMB-05 and its application in the detoxification of prehydrolyzates. Bioenerg Res 8:657–674

    Article  CAS  Google Scholar 

  10. Werpy T, Petersen G (2004) Top value added chemicals from biomass. Volume I: results of screening for potential candidates from sugars and synthesis gas. Pacific Northwest National Laboratory, National Renewable Energy Laboratory, Office of Biomass Program, U.S. Department of Energy (DOE), Oak Ridge, TN (USA)

  11. Rafiqul ISM, Sakinah AMM (2013) Process for the production of xylitol—a review. Food Rev Int 29:127–156

    Article  CAS  Google Scholar 

  12. Biocore-Europe Site. Technical note on pentose sugars and their applications. http://www.biocore-europe.org/file/131220_Biocore_TN%2302_BD.pdf. Accessed 12 January 2015

  13. de Albuquerque TL, da Silva Jr IJ, de Macedo GR (2014) Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem 49:1779–1789

    Article  Google Scholar 

  14. Continuum Clean Energy Innovation at NREL. At $2.15 a gallon, cellulosic ethanol could be cost competitive.http://www.nrel.gov/continuum/sustainable_transportation/cellulosic_ethanol.cfm Accessed 12 March 2015

  15. Mikkola JP, Vainio H, Salmi T, Sjöholm R, Ollonqvist T, Väyrynen J (2000) Deactivation kinetics of Mo-supported raney Ni catalyst in the hydrogenation of xylose to xylitol. Appl Catal A Gen 196:143–155

    Article  CAS  Google Scholar 

  16. da Cunha MAA, Converti A, Santos JC, Ferreira STS, da Silva SS (2009) PVA-hydrolgel entrapped Candida guilliermondii for xylitol production from sugarcane hemicellulose hydrolysate. Appl Biochem Biotechnol 157:527–537

    Article  PubMed  Google Scholar 

  17. Zhuang J, Liu Y, Wu Z, Sun Y, Lin L (2009) Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol Production. Bioresources 4:674–686

    CAS  Google Scholar 

  18. Barbosa MFS, de Medeiros MB, de Mancilha IM, Schneider H, Lee H (1988) Screening of yeasts for production of xylitol from D-xylose and some factors which affect xylitol yield in Candida guilliermondii. J Ind Microbiol 3:241–251

    Article  CAS  Google Scholar 

  19. El Baz AF, Shetaia YM, Elkhouli RR (2011) Kinetic behavior of Candida tropicals during xylitol production using semi-synthetic and hydrolysate based media. Afr J Biotechnol 10:16617–16625

    Google Scholar 

  20. Sirisansaneeyakul S, Wannawilai S, Chisti Y (2012) Repeated fed-batch production of xylitol by Candida magnoliae TISTR 5663. J Chem Biotechnol 88:1121–1129

    Article  Google Scholar 

  21. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  22. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  23. Panagiotou G, Olsson L (2007) Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol Bioeng 96:250–258

    Article  CAS  PubMed  Google Scholar 

  24. Huang CF, Jiang YF, Guo GL, Hwang WS (2011) Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour Technol 102:3322–3329

    Article  CAS  PubMed  Google Scholar 

  25. Kelly C, Jones O, Barnhart C, Lajoie C (2008) Effect of furfural, vanillin and syringaldehyde on Candida guilliermondii growth and xylitol biosynthesis. Appl Biochem Biotechnol 148:97–108

    Article  CAS  PubMed  Google Scholar 

  26. Mussatto SI, Santos JC, Roberto IC (2004) Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. J Chem Technol Biotechnol 79:590–596

    Article  CAS  Google Scholar 

  27. Marton JM, Felipe MGA, Silva JBA, Júnior AP (2006) Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production. Braz J Chem Eng 23:9–21

    Article  CAS  Google Scholar 

  28. Moreno AD, Ibarra D, Fernández JL, Ballesteros M (2012) Different Laccase Detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresour Technol 106:101–109

    Article  CAS  PubMed  Google Scholar 

  29. Li M, Meng X, Diao E, Du F (2012) Xylitol production by Candida tropicalis from corn cob hemicelluose hydrolysate in a two-stage fed-batch fermentation process. J Chem Technol Biotechnol 87:387–392

    Article  CAS  Google Scholar 

  30. Payne R, Edmonds M (2005) Isolation of shikimic acid from star aniseed. J Chem Educ 82:599

    Article  CAS  Google Scholar 

  31. Vogel HJ (1956) A convenient growth medium for Neurospora crassa (Medium N). Microbial Genet Bull 13:42–43

    Google Scholar 

  32. Gullón P, González-Muńoz MJ, van Gool MP, Schols HA, Hirsch J, Ebringerová, Parajó JC (2010) Production, refining, structural characterization and fermentability of rice husk xylooligosaccharides. J Agric Food Chem 58:3632–3641

    Article  PubMed  Google Scholar 

  33. Deutschmann R, Dekker RFH (2012) From plant biomass to bio-based chemicals: latest developments in xylan research. Biotechnol Adv 30:1627–1640

    Article  CAS  PubMed  Google Scholar 

  34. Villarreal MLM, Prata AMR, Felipe MGA, Almeida E, Silva JB (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzym Microb Technol 40:17–24

    Article  CAS  Google Scholar 

  35. Arruda PV, Felipe MGA (2009) Role of glycerol addition on xylose-to-xylitol bioconversion by Candida guilliermondii. Curr Microbiol 58:274–278

    Article  CAS  PubMed  Google Scholar 

  36. Pereira RS, Mussatto SI, Roberto IC (2011) Inhibitory action of toxic compounds present in lignocellulosic hydrolysates on xylose to xylitol bioconversion by Candida guilliermondii. J Ind Microbiol Biotechnol 38:71–78

    Article  CAS  PubMed  Google Scholar 

  37. Ling H, Cheng K, Ge J, Ping W (2011) Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. Nat Biotechnol 28:673–678

    CAS  Google Scholar 

  38. Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol—a byproduct of biodiesel production. Biotechnol Biofuels 5:13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rodrigues RCB, Felipe MGA, Roberto IC, Vitolo M (2003) Batch xylitol production by Candida guilliermondii FTI 20037 from sugarcane bagasse hemicellulosic hydrolyzate at controlled pH values. Bioprocess Biosyst Eng 26:103–107

    Article  CAS  PubMed  Google Scholar 

  40. Mussatto SI, Dragone G, Roberto IC (2005) Kinetic behavior of Candida guilliermondii yeast during xylitol production from brewer’s spent grain hemicellulosic hydrolysate. Biotechnol Prog 21:1352–1356

    Article  CAS  PubMed  Google Scholar 

  41. Mussatto SI, Roberto IC (2003) Xylitol production from high xylose concentration: evaluation of the fermentation in bioreactor under different stirring rates. J Appl Microbiol 95:331–337

    Article  CAS  PubMed  Google Scholar 

  42. Boussarsar H, Rogé B, Mathlouthi M (2009) Optimization of sugarcane baggase conversion by hydrothermal treatment for the recovery of xylose. Bioresour Technol 100:6537–6542

    Article  CAS  PubMed  Google Scholar 

  43. Wang L, Yang M, Fan, X, Zhu X, Xu T, Yuan Q (2011) An environmentally friendly and efficient method for xylitol bioconversion with high-temperature-steaming hydrolysate by adapted Candia tropicalis 46:1619-1626

  44. Rivas B, Domínguez JM, Domínguez H, Pararjó JC (2002) Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production from corn cobs. Enzym Microb Technol 31:431–438

    Article  CAS  Google Scholar 

  45. Felipe MGA, Veira MV, Vitolo M, Mancilha IM, Roberto IC, Silva SS (1995) Effect of acetic acid on xylose fermentation to xylitol by Candida guilliermondii. J Basic Microbiol 35:171–177

    Article  CAS  PubMed  Google Scholar 

  46. Trin LTP, Kundu C, Lee J-W, Lee H-J (2014) An integrated detoxification process with electrodialysis and adsorption from the hemicellulose hydrolysates of yellow poplars. Bioresour Technol 161:280–287

    Article  Google Scholar 

  47. Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16

    Article  PubMed Central  PubMed  Google Scholar 

  48. Rafiqul ISM, Sakinah AMM, Zularisam AW (2015) Inhibition by toxic compounds in the hemicellulosic hydrolysates on the activity of xylose reductase from Candida tropicalis. Biotechnol Lett 37:191–196

    Article  CAS  PubMed  Google Scholar 

  49. Cortez DV, Roberto IC (2010) Improved xylitol production in media containing phenolic aldehydes: application of response surface methodology for optimization and modeling bioprocess. J Chem Technol Biotechnol 85:33–38

    Article  Google Scholar 

  50. Dominguez JM, Cao NJ, Krishnan MS, Gong CS, Tsao GT (1997) Xylitol production from hybrid poplar wood chips pretreated by the ammonia steeping process. Biotechnol Tech 11:339–341

    Article  CAS  Google Scholar 

  51. Cho DH, Lee YJ, Um Y, Sang B-I, Kim YH (2009) Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Appl Microbiol Biotechnol 83:1035–1043

    Article  CAS  PubMed  Google Scholar 

  52. Rodrigues DCGA, da Silva SS, Felipe MGA (1999) Fed-batch culture of Candida guilliermondii FTI 20037 for xylitol production from sugar cane bagasse hydrolysate. Lett Appl Microbiol 29:359–363

    Article  CAS  Google Scholar 

  53. Bura R, Vajzovic A, Doty SL (2012) Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol. J Ind Microbiol Biotechnol 39:1003–1011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Centre for Research and Innovation in the Bioeconomy (CRIBE), Ontario, Canada (RFH Dekker). Dr. Regis Benech, Dr. Stephan Brey, and Greg Santavy of Greenfield Engineering and Technology (Research and Development), Chatham, ON (Canada) are thanked for providing the pilot plant-produced poplar prehydrolyzate samples. The authors gratefully acknowledge the technical expertise of Greg Kepka for assistance with the GC-MS analyses. Yue Sun (summer vacation student) and Magali Ferro (intern; Ecole Nationale Supérieure Agronomique de Toulouse, France) are thanked for their experimental contribution toward this work while at the Biorefining Research Institute during May–August 2013.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. H. Dekker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vithanage, L.N.G., Barbosa, A.M., Kankanamge, G.R.N. et al. Valorization of Hemicelluloses: Production of Bioxylitol from Poplar Wood Prehydrolyzates by Candida guilliermondii FTI 20037. Bioenerg. Res. 9, 181–197 (2016). https://doi.org/10.1007/s12155-015-9673-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9673-3

Keywords

Navigation