Skip to main content

Advertisement

Log in

Advances in positron emission tomography tracers related to vascular calcification

  • Review Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Microcalcification, a type of vascular calcification, increases the instability of plaque and easily leads to acute clinical events. Positron emission tomography (PET) is a new examination technology with significant advantages in identifying vascular calcification, especially microcalcification. The use of the 18F-NaF is undoubtedly the benchmark, and other PET tracers related to vascular calcification are also currently in development. Despite all this, a large number of studies are still needed to further clarify the specific mechanisms and characteristics. This review aimed at providing a summary of the application and progress of different PET tracers and also the future development direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellinge JW, Francis RJ, Majeed K, Watts GF, Schultz CJ. In search of the vulnerable patient or the vulnerable plaque: (18)F-sodium fluoride positron emission tomography for cardiovascular risk stratification. J Nucl Cardiol. 2018;25(5):1774–83.

    Article  PubMed  Google Scholar 

  2. Blomberg BA, Thomassen A, Takx RA, Vilstrup MH, Hess S, Nielsen AL, et al. Delayed sodium 18F-fluoride PET/CT imaging does not improve quantification of vascular calcification metabolism: results from the CAMONA study. J Nucl Cardiol. 2014;21(2):293–304.

    Article  PubMed  Google Scholar 

  3. Ahmed M, McPherson R, Abruzzo A, Thomas SE, Gorantla VR. Carotid artery calcification: what we know so far. Cureus. 2021;13(10): e18938.

    PubMed  PubMed Central  Google Scholar 

  4. Saba L, Nardi V, Cau R, Gupta A, Kamel H, Suri JS, et al. Carotid artery plaque calcifications: lessons from histopathology to diagnostic imaging. Stroke. 2022;53(1):290–7.

    Article  CAS  PubMed  Google Scholar 

  5. Tzolos E, Dweck MR. (18)F-sodium fluoride ((18)F-NaF) for imaging microcalcification activity in the cardiovascular system. Arterioscler Thromb Vasc Biol. 2020;40(7):1620–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cocker MS, Spence JD, Hammond R, Wells G, deKemp RA, Lum C, et al. [(18)F]-NaF PET/CT identifies active calcification in carotid plaque. JACC Cardiovasc Imaging. 2017;10(4):486–8.

    Article  PubMed  Google Scholar 

  7. Demer LL, Tintut Y, Nguyen KL, Hsiai T, Lee JT. Rigor and reproducibility in analysis of vascular calcification. Circ Res. 2017;120(8):1240–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vancheri F, Longo G, Vancheri S, Danial JSH, Henein MY. Coronary artery microcalcification: imaging and clinical implications. Diagnostics (Basel). 2019;9(4):125. 

    Article  Google Scholar 

  9. Nogales P, Velasco C, Mota-Cobián A, González-Cintado L, Mota RA, España S, et al. Analysis of (18)F-sodium fluoride positron emission tomography signal sources in atherosclerotic Minipigs shows specific binding of (18)F-sodium fluoride to plaque calcifications. Arterioscler Thromb Vasc Biol. 2021;41(10):e480–90.

    Article  CAS  PubMed  Google Scholar 

  10. Wang Z, Li L, Yan J, Sun Z, Shao C, Jing L, et al. Application of a targeted molecular probe in vascular calcification detection products: China, CN201811536247.X[P]. 2019;11–5.

  11. Evans NR, Tarkin JM, Le EP, Sriranjan RS, Corovic A, Warburton EA, et al. Integrated cardiovascular assessment of atherosclerosis using PET/MRI. Br J Radiol. 2020;93(1113):20190921.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li X, Heber D, Cal-Gonzalez J, Karanikas G, Mayerhoefer ME, Rasul S, et al. Association between osteogenesis and inflammation during the progression of calcified plaque evaluated by (18)F-fluoride and (18)F-FDG. J Nucl Med. 2017;58(6):968–74.

    Article  PubMed  Google Scholar 

  13. Pellico J, Fernández-Barahona I, Ruiz-Cabello J, Gutiérrez L, Muñoz-Hernando M, Sánchez-Guisado MJ, et al. HAP-multitag, a PET and positive MRI contrast nanotracer for the longitudinal characterization of vascular calcifications in atherosclerosis. ACS Appl Mater Interfaces. 2021;13(38):45279–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doris MK, Meah MN, Moss AJ, Andrews JPM, Bing R, Gillen R, et al. Coronary (18)F-fluoride uptake and progression of coronary artery calcification. Circ Cardiovasc Imaging. 2020;13(12): e011438.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hu Y, Hu P, Hu B, Chen W, Cheng D, Shi H. Dynamic monitoring of active calcification in atherosclerosis by (18)F-NaF PET imaging. Int J Cardiovasc Imaging. 2021;37(2):731–9.

    Article  PubMed  Google Scholar 

  16. Abdelbaky A, Corsini E, Figueroa AL, Fontanez S, Subramanian S, Ferencik M, et al. Focal arterial inflammation precedes subsequent calcification in the same location: a longitudinal FDG-PET/CT study. Circ Cardiovasc Imaging. 2013;6(5):747–54.

    Article  PubMed  Google Scholar 

  17. Al-Enezi MS, Abdo RA, Mokeddem MY, Slimani FAA, Khalil A, Fulop T, et al. Assessment of artery calcification in atherosclerosis with dynamic 18F-FDG-PET/CT imaging in elderly subjects. Int J Cardiovasc Imaging. 2019;35(5):947–54.

    Article  PubMed  Google Scholar 

  18. Nakahara T, Dweck MR, Narula N, Pisapia D, Narula J, Strauss HW. Coronary artery calcification: from mechanism to molecular imaging. JACC Cardiovasc Imaging. 2017;10(5):582–93.

    Article  PubMed  Google Scholar 

  19. Nakahara T, Narula J, Fox JJ, Jinzaki M, Strauss HW. Temporal relationship between (18)F-sodium fluoride uptake in the abdominal aorta and evolution of CT-verified vascular calcification. J Nucl Cardiol. 2021;28(5):1936–45.

    Article  PubMed  Google Scholar 

  20. Blomberg BA, de Jong PA, Thomassen A, Lam MGE, Vach W, Olsen MH, et al. Thoracic aorta calcification but not inflammation is associated with increased cardiovascular disease risk: results of the CAMONA study. Eur J Nucl Med Mol Imaging. 2017;44(2):249–58.

    Article  PubMed  Google Scholar 

  21. Høilund-Carlsen PF, Moghbel MC, Gerke O, Alavi A. Evolving role of PET in detecting and characterizing atherosclerosis. PET Clin. 2019;14(2):197–209.

    Article  PubMed  Google Scholar 

  22. Cho SG, Park KS, Kim J, Kang SR, Kwon SY, Seon HJ, et al. Prediction of coronary artery calcium progression by FDG uptake of large arteries in asymptomatic individuals. Eur J Nucl Med Mol Imaging. 2017;44(1):129–40.

    Article  CAS  PubMed  Google Scholar 

  23. Dunphy MP, Freiman A, Larson SM, Strauss HW. Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med. 2005;46(8):1278–84.

    PubMed  Google Scholar 

  24. Lensen KDF, Voskuyl AE, Comans EFI, van der Laken CJ, Boellaard R, Smulders YM. Should vascular wall (18)F-FDG uptake be adjusted for the extent of atherosclerotic burden? Int J Cardiovasc Imaging. 2020;36(3):545–51.

    Article  PubMed  Google Scholar 

  25. Guaraldi G, Milic J, Prandini N, Ligabue G, Esposito F, Ciusa G, et al. (18)Fluoride-based molecular imaging of coronary atherosclerosis in HIV infected patients. Atherosclerosis. 2020;297:127–35.

    Article  CAS  PubMed  Google Scholar 

  26. Mayer M, Borja AJ, Hancin EC, Auslander T, Revheim ME, Moghbel MC, et al. Imaging atherosclerosis by PET, with emphasis on the role of FDG and NaF as potential biomarkers for this disorder. Front Physiol. 2020;11: 511391.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weiberg D, Thackeray JT, Daum G, Sohns JM, Kropf S, Wester HJ, et al. Clinical molecular imaging of chemokine receptor CXCR4 expression in atherosclerotic plaque using (68)Ga-pentixafor PET: correlation with cardiovascular risk factors and calcified plaque burden. J Nucl Med. 2018;59(2):266–72.

    Article  CAS  PubMed  Google Scholar 

  28. Robson PM, Dweck MR, Trivieri MG, Abgral R, Karakatsanis NA, Contreras J, et al. Coronary artery PET/MR imaging: feasibility, limitations, and solutions. JACC Cardiovasc Imaging. 2017;10(10 Pt A):1103–12.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Raynor WY, Park PSU, Borja AJ, Sun Y, Werner TJ, Ng SJ, et al. PET-based imaging with (18)F-FDG and (18)F-NaF to assess inflammation and microcalcification in atherosclerosis and other vascular and thrombotic disorders. Diagnostics (Basel). 2021;11(12):2234.

    Article  CAS  PubMed Central  Google Scholar 

  30. Saboury B, Edenbrandt L, Piri R, Gerke O, Werner T, Arbab-Zadeh A, et al. Alavi-Carlsen calcification score (ACCS): a simple measure of global cardiac atherosclerosis burden. Diagnostics (Basel). 2021;11(8):1421.

    Article  CAS  Google Scholar 

  31. Florea A, Morgenroth A, Bucerius J, Schurgers LJ, Mottaghy FM. Locking and loading the bullet against micro-calcification. Eur J Prev Cardiol. 2020;2047487320911138. 

    Article  PubMed  Google Scholar 

  32. Doris MK, Newby DE. Identification of early vascular calcification with (18)F-sodium fluoride: potential clinical application. Expert Rev Cardiovasc Ther. 2016;14(6):691–701.

    Article  CAS  PubMed  Google Scholar 

  33. Kwiecinski J, Slomka PJ, Dweck MR, Newby DE, Berman DS. Vulnerable plaque imaging using (18)F-sodium fluoride positron emission tomography. Br J Radiol. 2020;93(1113):20190797.

    Article  PubMed  Google Scholar 

  34. Blomberg BA, Thomassen A, de Jong PA, Simonsen JA, Lam MG, Nielsen AL, et al. Impact of personal characteristics and technical factors on quantification of sodium 18F-fluoride uptake in human arteries: prospective evaluation of healthy subjects. J Nucl Med. 2015;56(10):1534–40.

    Article  CAS  PubMed  Google Scholar 

  35. Kwiecinski J, Berman DS, Lee SE, Dey D, Cadet S, Lassen ML, et al. Three-hour delayed imaging improves assessment of coronary (18)F-sodium fluoride PET. J Nucl Med. 2019;60(4):530–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. den Harder AM, Wolterink JM, Bartstra JW, Spiering W, Zwakenberg SR, Beulens JW, et al. Vascular uptake on (18)F-sodium fluoride positron emission tomography: precursor of vascular calcification? J Nucl Cardiol. 2021;28(5):2244–54.

    Article  Google Scholar 

  37. Lee R, Seok JW. An update on [(18)F]fluoride PET imaging for atherosclerotic disease. J Lipid Atheroscler. 2020;9(3):349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ishiwata Y, Kaneta T, Nawata S, Hino-Shishikura A, Yoshida K, Inoue T. Quantification of temporal changes in calcium score in active atherosclerotic plaque in major vessels by (18)F-sodium fluoride PET/CT. Eur J Nucl Med Mol Imaging. 2017;44(9):1529–37.

    Article  CAS  PubMed  Google Scholar 

  39. Bellinge JW, Francis RJ, Lee SC, Phillips M, Rajwani A, Lewis JR, et al. (18)F-sodium fluoride positron emission tomography activity predicts the development of new coronary artery calcifications. Arterioscler Thromb Vasc Biol. 2021;41(1):534–41.

    CAS  PubMed  Google Scholar 

  40. Høilund-Carlsen PF, Piri R, Constantinescu C, Iversen KK, Werner TJ, Sturek M, et al. Atherosclerosis imaging with (18)F-sodium fluoride PET. Diagnostics (Basel). 2020;10(10):852.

    Article  CAS  Google Scholar 

  41. Fiz F, Morbelli S, Piccardo A, Bauckneht M, Ferrarazzo G, Pestarino E, et al. 18F-NaF uptake by atherosclerotic plaque on PET/CT imaging: inverse correlation between calcification density and mineral metabolic activity. J Nucl Med. 2015;56(7):1019–23.

    Article  CAS  PubMed  Google Scholar 

  42. Chowdhury MM, Tarkin JM, Albaghdadi MS, Evans NR, Le EPV, Berrett TB, et al. Vascular positron emission tomography and restenosis in symptomatic peripheral arterial disease: a prospective clinical study. JACC Cardiovasc Imaging. 2020;13(4):1008–17.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Forsythe RO, Dweck MR, McBride OMB, Vesey AT, Semple SI, Shah ASV, et al. (18)F-sodium fluoride uptake in abdominal aortic aneurysms: the SoFIA(3) study. J Am Coll Cardiol. 2018;71(5):513–23.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nakahara T, Narula J, Tijssen JGP, Agarwal S, Chowdhury MM, Coughlin PA, et al. (18)F-fluoride positron emission tomographic imaging of penile arteries and erectile dysfunction. J Am Coll Cardiol. 2019;73(12):1386–94.

    Article  PubMed  Google Scholar 

  45. Gutierrez-Cardo A, Lillo E, Murcia-Casas B, Carrillo-Linares JL, García-Argüello F, Sánchez-Sánchez P, et al. Skin and arterial wall deposits of 18F-NaF and severity of disease in patients with pseudoxanthoma elasticum. J Clin Med. 2020;9(5):1393.

    Article  CAS  PubMed Central  Google Scholar 

  46. Omarjee L, Mention PJ, Janin A, Kauffenstein G, Pabic EL, Meilhac O, et al. Assessment of inflammation and calcification in pseudoxanthoma elasticum arteries and skin with 18F-FluroDeoxyGlucose and 18F-sodium fluoride positron emission tomography/computed tomography imaging: The GOCAPXE Trial. J Clin Med. 2020;9(11):3448.

    Article  CAS  PubMed Central  Google Scholar 

  47. Bhattaru A, Rojulpote C, Gonuguntla K, Patil S, Karambelkar P, Vuthaluru K, et al. An understanding of the atherosclerotic molecular calcific heterogeneity between coronary, upper limb, abdominal, and lower extremity arteries as assessed by NaF PET/CT. Am J Nucl Med Mol Imaging. 2021;11(1):40–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cox AJ, Hsu FC, Agarwal S, Freedman BI, Herrington DM, Carr JJ, et al. Prediction of mortality using a multi-bed vascular calcification score in the Diabetes Heart Study. Cardiovasc Diabetol. 2014;13:160.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sorci O, Batzdorf AS, Mayer M, Rhodes S, Peng M, Jankelovits AR, et al. (18)F-sodium fluoride PET/CT provides prognostic clarity compared to calcium and Framingham risk scoring when addressing whole-heart arterial calcification. Eur J Nucl Med Mol Imaging. 2020;47(7):1678–87.

    Article  CAS  PubMed  Google Scholar 

  50. Kwiecinski J, Dey D, Cadet S, Lee SE, Tamarappoo B, Otaki Y, et al. Predictors of 18F-sodium fluoride uptake in patients with stable coronary artery disease and adverse plaque features on computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2020;21(1):58–66.

    Article  PubMed  Google Scholar 

  51. Keeling GP, Sherin B, Kim J, San Juan B, Grus T, Eykyn TR, et al. [(68)Ga]Ga-THP-Pam: a bisphosphonate PET tracer with facile radiolabeling and broad calcium mineral affinity. Bioconjug Chem. 2021;32(7):1276–89.

    Article  CAS  PubMed  Google Scholar 

  52. Kircher M, Tran-Gia J, Kemmer L, Zhang X, Schirbel A, Werner RA, et al. Imaging inflammation in atherosclerosis with CXCR4-directed (68)Ga-pentixafor PET/CT: correlation with (18)F-FDG PET/CT. J Nucl Med. 2020;61(5):751–6.

    Article  CAS  PubMed  Google Scholar 

  53. Bartlett B, Ludewick HP, Lee S, Verma S, Francis RJ, Dwivedi G. Imaging inflammation in patients and animals: focus on PET imaging the vulnerable plaque. Cells. 2021;10(10):2573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Duarte PS, Marin JFG, De Carvalho JWA, Sapienza MT, Buchpiguel CA. Brain metastasis of medullary thyroid carcinoma without macroscopic calcification detected first on 68Ga-dotatate and then on 18F-fluoride PET/CT. Clin Nucl Med. 2018;43(8):623–4.

    Article  PubMed  Google Scholar 

  55. Itani M, Haq A, Amin M, Mhlanga J, Lenihan D, Iravani A, et al. Myocardial uptake of (68)Ga-DOTATATE: correlation with cardiac disease and risk factors. Acta Radiol. 2021;2841851211054193. 

    Article  PubMed  Google Scholar 

  56. Pedersen SF, Sandholt BV, Keller SH, Hansen AE, Clemmensen AE, Sillesen H, et al. 64Cu-DOTATATE PET/MRI for detection of activated macrophages in carotid atherosclerotic plaques: studies in patients undergoing endarterectomy. Arterioscler Thromb Vasc Biol. 2015;35(7):1696–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu SN, Zhou X, Zhu CJ, Qin W, Zhu J, Zhang KL, et al. Nϵ-Carboxymethyl-lysine deteriorates vascular calcification in diabetic atherosclerosis induced by vascular smooth muscle cell-derived foam cells. Front Pharmacol. 2020;11:626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu H, Wang Z, Wang Y, Hu S, Liu N. Biodistribution and elimination study of fluorine-18 labeled Nε-carboxymethyl-lysine following intragastric and intravenous administration. PLoS ONE. 2013;8(3): e57897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Eupen MG, Schram MT, Colhoun HM, Scheijen JL, Stehouwer CD, Schalkwijk CG. Plasma levels of advanced glycation endproducts are associated with type 1 diabetes and coronary artery calcification. Cardiovasc Diabetol. 2013;12:149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hecht E, Freise C, Websky KV, Nasser H, Kretzschmar N, Stawowy P, et al. The matrix metalloproteinases 2 and 9 initiate uraemic vascular calcifications. Nephrol Dial Transplant. 2016;31(5):789–97.

    Article  CAS  PubMed  Google Scholar 

  61. Schäfers M, Riemann B, Kopka K, Breyholz HJ, Wagner S, Schäfers KP, et al. Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation. 2004;109(21):2554–9.

    Article  PubMed  CAS  Google Scholar 

  62. Ohshima S, Petrov A, Fujimoto S, Zhou J, Azure M, Edwards DS, et al. Molecular imaging of matrix metalloproteinase expression in atherosclerotic plaques of mice deficient in apolipoprotein E or low-density-lipoprotein receptor. J Nucl Med. 2009;50(4):612–7.

    Article  CAS  PubMed  Google Scholar 

  63. Fujimoto S, Hartung D, Ohshima S, Edwards DS, Zhou J, Yalamanchili P, et al. Molecular imaging of matrix metalloproteinase in atherosclerotic lesions: resolution with dietary modification and statin therapy. J Am Coll Cardiol. 2008;52(23):1847–57.

    Article  CAS  PubMed  Google Scholar 

  64. Kato K, Schober O, Ikeda M, Schäfers M, Ishigaki T, Kies P, et al. Evaluation and comparison of 11C-choline uptake and calcification in aortic and common carotid arterial walls with combined PET/CT. Eur J Nucl Med Mol Imaging. 2009;36(10):1622–8.

    Article  CAS  PubMed  Google Scholar 

  65. Hara T, Kondo T, Hara T, Kosaka N. Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg. 2003;99(3):474–9.

    Article  PubMed  Google Scholar 

  66. Bucerius J, Schmaljohann J, Böhm I, Palmedo H, Guhlke S, Tiemann K, et al. Feasibility of 18F-fluoromethylcholine PET/CT for imaging of vessel wall alterations in humans—first results. Eur J Nucl Med Mol Imaging. 2008;35(4):815–20.

    Article  PubMed  Google Scholar 

  67. Love WD, Romney RB, Burch GE. A comparison of the distribution of potassium and exchangeable rubidium in the organs of the dog, using rubidium. Circ Res. 1954;2(2):112–22.

    Article  CAS  PubMed  Google Scholar 

  68. Chatal JF, Rouzet F, Haddad F, Bourdeau C, Mathieu C, Le Guludec D. Story of rubidium-82 and advantages for myocardial perfusion PET imaging. Front Med. 2015;2:65.

    Article  Google Scholar 

  69. Curillova Z, Yaman BF, Dorbala S, Kwong RY, Sitek A, El Fakhri G, et al. Quantitative relationship between coronary calcium content and coronary flow reserve as assessed by integrated PET/CT imaging. Eur J Nucl Med Mol Imaging. 2009;36(10):1603–10.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Assante R, Zampella E, Arumugam P, Acampa W, Imbriaco M, Tout D, et al. Quantitative relationship between coronary artery calcium and myocardial blood flow by hybrid rubidium-82 PET/CT imaging in patients with suspected coronary artery disease. J Nucl Cardiol. 2017;24(2):494–501.

    Article  PubMed  Google Scholar 

  71. von Scholten BJ, Hasbak P, Christensen TE, Ghotbi AA, Kjaer A, Rossing P, et al. Cardiac (82)Rb PET/CT for fast and non-invasive assessment of microvascular function and structure in asymptomatic patients with type 2 diabetes. Diabetologia. 2016;59(2):371–8.

    Article  CAS  Google Scholar 

  72. Derlin T, Habermann CR, Lengyel Z, Busch JD, Wisotzki C, Mester J, et al. Feasibility of 11C-acetate PET/CT for imaging of fatty acid synthesis in the atherosclerotic vessel wall. J Nucl Med. 2011;52(12):1848–54.

    Article  CAS  PubMed  Google Scholar 

  73. Villa-Bellosta R, Hernández-Martínez E, Mérida-Herrero E, González-Parra E. Impact of acetate- or citrate-acidified bicarbonate dialysate on ex vivo aorta wall calcification. Sci Rep. 2019;9(1):11374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Gennari FJ, Sargent JA. Acetate metabolism, organic acid production, and the independent effects of bicarbonate and acetate as alkalinizing agents in dialysis bath solutions. Semin Dial. 2019;32(3):274–5.

    Article  PubMed  Google Scholar 

  75. Mason DL, Godugu K, Nnani D, Mousa SA. Effects of sevelamer carbonate versus calcium acetate on vascular calcification, inflammation, and endothelial dysfunction in chronic kidney disease. Clin Transl Sci. 2022;15(2):353–60.

    Article  CAS  PubMed  Google Scholar 

  76. Paravastu SS, Theng EH, Morris MA, Grayson P, Collins MT, Maass-Moreno R, et al. Artificial intelligence in vascular-PET: translational and clinical applications. PET Clin. 2022;17(1):95–113.

    Article  PubMed  Google Scholar 

  77. Demer LL, Tintut Y. Interactive and multifactorial mechanisms of calcific vascular and valvular disease. Trends Endocrinol Metab. 2019;30(9):646–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Varga-Szemes A, Penmetsa M, Emrich T, Todoran TM, Suranyi P, Fuller SR, et al. Diagnostic accuracy of non-contrast quiescent-interval slice-selective (QISS) MRA combined with MRI-based vascular calcification visualization for the assessment of arterial stenosis in patients with lower extremity peripheral artery disease. Eur Radiol. 2021;31(5):2778–87.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang L, Li L, Feng G, Fan T, Jiang H, Wang Z. Advances in CT techniques in vascular calcification. Front Cardiovasc Med. 2021;8: 716822.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Adams LC, Böker SM, Bender YY, Fallenberg EM, Wagner M, Liebig T, et al. Detection of vessel wall calcifications in vertebral arteries using susceptibility weighted imaging. Neuroradiology. 2017;59(9):861–72.

    Article  PubMed  Google Scholar 

  81. Piri R, Edenbrandt L, Larsson M, Enqvist O, Nøddeskou-Fink AH, Gerke O, et al. Aortic wall segmentation in (18)F-sodium fluoride PET/CT scans: head-to-head comparison of artificial intelligence-based versus manual segmentation. J Nucl Cardiol. 2021. 

Download references

Funding

This work was supported as follows: the National Natural Science Foundation of China (82070455); the related Foundation of Jiangsu Province (BK20201225); Medical Innovation Team Project of Jiangsu Province (CXTDA2017010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Zhong, Z., Feng, G. et al. Advances in positron emission tomography tracers related to vascular calcification. Ann Nucl Med 36, 787–797 (2022). https://doi.org/10.1007/s12149-022-01771-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-022-01771-3

Keywords

Navigation