Skip to main content

Advertisement

Log in

Efficacy and safety of 32P-nanocolloid for treatment of distant lymph node metastasis in VX2 tumor-bearing rabbits

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Background

Eradication of micrometastases present in lymph nodes of cancer patients improves their prognosis significantly. Radionuclide therapy possesses the potential to eliminate such metastases.

Objective

This study was performed to evaluate the efficacy and safety of 32P-nanocolloid therapy in the treatment of distant carcinoma cell metastases in lymph nodes of VX2 tumor-bearing rabbits.

Methods

To obtain VX2 tumor micrometastases in right armpit lymph nodes of 12 male New Zealand white rabbits, VX2 tumors were implanted by hypodermal inoculation into the right anterior limb. Animals were randomly divided into therapy (n = 6) and control (n = 6) groups. 32P-nanocolloid (0.5 mCi), 95% of which was >50 nm in diameter, was administered to the therapy group, and saline was administered to the control group. Injections were given once weekly for 4 weeks.

Results

2-Deoxy-2[18F]-fluoro-d-glucose positron emission tomography revealed that the number of involved lymph nodes and the maximum standardized uptake value decreased in the 32P-nanocolloid therapy group as compared with the baseline or saline control grou0 (P < 0.05). The expression of the lymphangiogenesis factors vascular endothelial growth factors (VEGF)-C and VEGF-D by VX2 tumor cells present in lymph nodes was significantly lower in the therapy group as compared with the control group. Additionally, apoptotic VX2 tumor cell death was significantly greater in lymph nodes of the therapy as compared with the control group (P < 0.01). With the exception of a decrease in white blood cells of peripheral blood (P < 0.05), standard laboratory values were unaffected throughout the course of therapy with 32P-nanocolloid.

Conclusions

These findings support treatment with 32P-nanocolloid as a safe and effective approach for eradication of lymph node micrometastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pantel K, Woelfle U. Micrometastasis in breast cancer and other solid tumors. J Biol Regul Homeost Agents 2004;18:120–125.

    PubMed  CAS  Google Scholar 

  2. Ji RC. Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: new insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev 2006;25:677–694.

    Article  PubMed  Google Scholar 

  3. Harisinghani MG, Weissleder R. Sensitive, noninvasive detection of lymph node metastases. PloS Med 2004;1:e66.

    Article  PubMed  Google Scholar 

  4. Wissmann C, Detmar M. Pathways targeting tumor lymphangiogenesis. Clin Cancer Res 2006;12:6865–6868.

    Article  PubMed  CAS  Google Scholar 

  5. Stacker SA, Baldwin ME, Achen MG. The role of tumor lymphangiogenesis in metastatic spread. FASEB J 2002;16:922–934.

    Article  PubMed  CAS  Google Scholar 

  6. Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 2002;161:947–956.

    PubMed  CAS  Google Scholar 

  7. Pepper MS, Tille JC, Nisato R, Skobe M. Lymphangiogenesis and tumor metastasis. Cell Tissue Res 2003;314:167–177.

    Article  PubMed  CAS  Google Scholar 

  8. Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 2005;9:777–794.

    Article  PubMed  CAS  Google Scholar 

  9. Syme A, McQuarrie S, Fallone BG. Beta dose-rate distributions in microscopic spherical tumors for intraperitoneal radioimmunotherapy. Int J Radiat Oncol Biol Phys 2003;56:1495–1506.

    Article  PubMed  Google Scholar 

  10. Brans B, Linden O, Giammarile F, Tennvall J, Punt C. Clinical applications of newer radionuclide therapies. Eur J Cancer 2006;42:994–1003.

    Article  PubMed  CAS  Google Scholar 

  11. Sullivan DC, Harris CC, Currie JL, Wilkinson RH, Creasman WT. Observations on the intraperitoneal distribution of chromic phosphate (32P) suspension for intraperitoneal therapy. Radiology 1983;146:539–541.

    PubMed  CAS  Google Scholar 

  12. Spencer TR Jr, Marks RD Jr, Fenn JO, Jenrette JM III, Lutz MH. Intraperitoneal P-32 after negative second-look laparotomy in ovarian carcinoma. Cancer 1989;63:2434–2437.

    Article  PubMed  Google Scholar 

  13. Meredith RF, Buchsbaum DJ, Alvarez RD, LoBuglio AF. Brief overview of preclinical and clinical studies in the development of intraperitoneal radioimmunotherapy for ovarian cancer. Clin Cancer Res 2007;13:5643s–5645s.

    Article  PubMed  CAS  Google Scholar 

  14. Goh AS, Chung AY, Lo RH, Lau TN, Yu SW, Chng M, et al. A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device: a first-in-man study. Int J Radiat Oncol Biol Phys 2007;67:786–792.

    PubMed  CAS  Google Scholar 

  15. Izbicki R, Weyhing BT III, Baker L, Caoili EM, Vaitkevicius VK. Pleural effusion in cancer patients: a prospective randomized study of pleural drainage with the addition of radioactive phosphorous to the pleural space vs. pleural drainage alone. Cancer 1975;36:1511–1518.

    Article  PubMed  CAS  Google Scholar 

  16. Jackson GL, Blosser NM. Intracavitary chromic phosphate (32P) colloidal suspension therapy. Cancer 1981;48:2596–2598.

    Article  PubMed  CAS  Google Scholar 

  17. Rogoff EE, Hilaris BS, Huvos AG. Long-term survival in patients with malignant peritoneal mesothelioma treated with irradiation. Cancer 1973;32:656–664.

    Article  PubMed  CAS  Google Scholar 

  18. Alimi KA, Firusian N, Dempke W. Effects of intralesional 32-P chromic phosphate in refractory patients with head and neck tumors. Anticancer Res 2007;27:2997–3000.

    PubMed  Google Scholar 

  19. Westlin JE, Andersson-Forsman C, Garske U, Linne T, Aas M, Glimelius B, et al. Objective responses after fractionated infusional brachytherapy of unresectable pancreatic adenocarcinomas. Cancer 1997;80:2743–2748.

    Article  PubMed  CAS  Google Scholar 

  20. DeNittis AS, Stambaugh MD, Lang P, Wallner PE, Lustig RA, Dillman RO, et al. Complete remission of nonresectable pancreatic cancer after infusional colloidal phosphorus-32 brachytherapy, external beam radiation therapy, and 5- fluorouracil: a preliminary report. Am J Clin Oncol 1999;22:355–360.

    Article  PubMed  CAS  Google Scholar 

  21. Lord RS, Kinmonth JB. Histologic effects of endolymphatic radiotherapy. Cancer 1969;23:440–450.

    Article  PubMed  CAS  Google Scholar 

  22. Kassis AI, Adelstein SJ. Radiobiologic principles in radionuclide therapy. J Nucl Med 2005;46:4S–12S.

    PubMed  Google Scholar 

  23. Ikomi F, Hanna GK, Schmid-Schonbein GW. Mechanism of colloidal particle uptake into the lymphatic system: basic study with percutaneous lymphography. Radiology 1995;196:107–113.

    PubMed  CAS  Google Scholar 

  24. Uenosono Y, Natsugoe S, Higashi H, Ehi K, Miyazono F, Ishigami S, et al. Evaluation of colloid size for sentinel nodes detection using radioisotope in early gastric cancer. Cancer Lett 2003;200:19–24.

    Article  PubMed  CAS  Google Scholar 

  25. Tsopelas C. Particle size analysis of (99m)Tc-labeled and unlabeled antimony trisulfide and rhenium sulfide colloids intended for lymphoscintigraphic application. J Nucl Med 2001;42:460–466.

    PubMed  CAS  Google Scholar 

  26. Pandey U, Sarma HD, Ingle AD, Kulloli BS, Samuel G, Venkatesh M. Radioactive skin bandages incorporating 32P for treatment of superficial tumors. Cancer Biother Radiopharm 2006;21:257–262.

    Article  PubMed  CAS  Google Scholar 

  27. Sapundzhiev NR, Dunne AA, Ramaswamy A, Sitter H, Davis RK, Werner JA. Lymph node metastasis in an animal model: effect of piecemeal laser surgical resection. Lasers Surg Med 2005;36:371–376.

    Article  PubMed  Google Scholar 

  28. Ege GN. Radiocolloid lymphoscintigraphy in neoplastic disease. Cancer Res 1980;40:3065–3071.

    PubMed  CAS  Google Scholar 

  29. Jansen L, Nieweg OE, Kapteijn AE, Valdes Olmos RA, Muller SH, Hoefnagel CA, et al. Reliability of lymphoscintigraphy in indicating the number of sentinel nodes in melanoma patients. Ann Surg Oncol 2000;7:624–630.

    PubMed  CAS  Google Scholar 

  30. Mariani G, Moresco L, Viale G, Villa G, Bagnasco M, Canavese G, et al. Radioguided sentinel lymph node biopsy in breast cancer surgery. J Nucl Med 2001;42:1198–1215.

    PubMed  CAS  Google Scholar 

  31. Kitagawa Y, Fujii H, Mukai M, Kubo A, Kitajima M. Current status and future prospects of sentinel node navigational surgery for gastrointestinal cancers. Ann Surg Oncol 2004;11:242S–244S.

    PubMed  Google Scholar 

  32. Leichner PK, Rosenshein NB, Leibel SA, Order SE. Distribution and tissue dose of intraperitoneally administered radioactive chronic phosphate (32P) in New Zealand white rabbits. Radiology 1980;134:729–734.

    PubMed  CAS  Google Scholar 

  33. Kaplan WD, Zimmerman RE, Bloomer WD, Knapp RC, Adelstein SJ. Therapeutic intraperitoneal 32P: a clinical assessment of the dynamics of distribution. Radiology 1981;138:683–688.

    PubMed  CAS  Google Scholar 

  34. Daozhen C, Lu L, Guansheng T, Zhiyong L, Xudong L, Ying H. Preventing and treating lymphatic minute metastasis with (32)p-chromic phosphate during an operation. Cancer Biother Radiopharm 2007;22:24–32.

    PubMed  Google Scholar 

  35. Verheij M, Bartelink H. Radiation-induced apoptosis. Cell Tissue Res 2000;301:133–142.

    Article  PubMed  CAS  Google Scholar 

  36. Lee I. Enhanced tumor targeting by an intratumoral injection of colloidal chromic 32P in two human tumors (AsPC-1 pancreas and Ls174T colon) in nude mice. J Surg Oncol 1999;70:161–166.

    Article  PubMed  CAS  Google Scholar 

  37. Akine Y, Tokita N, Tokuuye K, Satoh M, Churei H, Le Pechoux C, et al. Suppression of rabbit VX-2 subcutaneous tumor growth by gadolinium neutron capture therapy. Jpn J Cancer Res 1993;84:841–843.

    PubMed  CAS  Google Scholar 

  38. Lee I, Wallner PE. Evaluation of cellular uptake, tumor retention, radiation response, and tumor pathophysiology in experimental solid tumors after an intratumoral infusion of colloidal 32P. Cancer 1997;80:2611–2617.

    Article  PubMed  CAS  Google Scholar 

  39. Liu L, Feng GS, Gao H, Tong GS, Wang Y, Gao W, et al. Chromic-P32 phosphate treatment of implanted pancreatic carcinoma: mechanism involved. World J Gastroenterol 2005;11:2101–2108.

    PubMed  CAS  Google Scholar 

  40. Kaluzova M, Kaluz S, Lerman MI, Stanbridge EJ. DNA damage is a prerequisite for p53-mediated proteasomal degradation of HIF-1alpha in hypoxic cells and downregulation of the hypoxia marker carbonic anhydrase IX. Mol Cell Biol 2004;24:5757–5766.

    Article  PubMed  CAS  Google Scholar 

  41. Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E. Energy metabolism in tumor cells. FEBS J 2007;274:1393–1418.

    Article  PubMed  CAS  Google Scholar 

  42. Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med 2005;46:983–995.

    PubMed  CAS  Google Scholar 

  43. Oya N, Nagata Y, Tamaki N, Takagi T, Murata R, Magata Y, et al. FDG-PET evaluation of therapeutic effects on VX2 liver tumor. J Nucl Med 1996;37:296–302.

    PubMed  CAS  Google Scholar 

  44. Basu S, Zaidi H, Houseni M, Bural G, Udupa J, Acton P, et al. Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. Semin Nucl Med 2007;37:223–239.

    Article  PubMed  Google Scholar 

  45. Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 2001;42:1412–1417.

    PubMed  CAS  Google Scholar 

  46. Ishii K, Hosono MN, Wada Y, Maeda M, Kondo S, Takada Y, et al. Usefulness of FDG-microPET for early evaluation of therapeutic effects on VX2 rabbit carcinoma. Ann Nucl Med 2006;20:123–130.

    Article  PubMed  Google Scholar 

  47. Bhana N. Granulocyte colony-stimulating factors in the management of chemotherapy-induced neutropenia: evidence based review. Curr Opin Oncol 2007;19:328–335.

    Article  PubMed  CAS  Google Scholar 

  48. Leichner PK, Rosenshein NB, Leibel SA, Order SE. Distribution and tissue dose of intraperitoneally administered radioactive chromic phosphate (32P) in New Zealand white rabbits. Radiology 1980;134:729–734.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, S., Huang, G., Liu, P. et al. Efficacy and safety of 32P-nanocolloid for treatment of distant lymph node metastasis in VX2 tumor-bearing rabbits. Ann Nucl Med 22, 849–858 (2008). https://doi.org/10.1007/s12149-008-0188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-008-0188-2

Keywords

Navigation