Skip to main content

Advertisement

Log in

Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: New insights into intratumoral and peritumoral lymphatics

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Lymphatic metastasis of tumor cells represents a series of extremely complex and sequential processes that include dissemination and invasion into surrounding stromal tissues from primary tumors, penetration into lymphatic walls and implantation in regional lymph nodes, and extravasation or proliferation in parenchyma of target organs. Recent developments in lymphatic biology and research, especially the application of unique molecular markers specific for lymphatic endothelial cells (LECs), LYVE-1, Prox-1 and podoplanin have provided exciting new insights into the tumor microenvironment and LEC–tumor cell interface. To date, established factors for determining the behavior and prognosis of primary tumors have been emphasized morphologically and physiologically, i.e., lymphatic impairment and vessel density, dysfunction of lymphatic valves, interstitial fluid pressure, as well as a series of lymphangiogenic growth factors including VEGF-C/-D, and other cytokines and chemokines. Increasing knowledge of the tumor biological significance in lymphatics within the tumors (intratumoral lymphatics, ITLs) and at the tumor periphery (peritumoral lymphatics, PTLs) has greatly promoted understanding of tumor access into the lymphatic system by inducing lymphangiogenesis or by co-opting preexisting lymphatics. Therefore, the targeting PTLs and ITLs, which have been proposed as an important route for antimetastatic approach, are deemed worthy of further study in various animal tumor models and human tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407, 249–257.

    PubMed  CAS  Google Scholar 

  2. Achen, M. G., McColl, B. K., & Stacker, S. A. (2005). Focus on lymphangiogenesis in tumor metastasis. Cancer Cells, 7, 121–127.

    CAS  Google Scholar 

  3. Alitalo, K., Tammela, T., & Petrova, T. V. (2005). Lymphangiogenesis in development and human disease. Nature, 438, 946–953.

    PubMed  CAS  Google Scholar 

  4. Ji, R. C. (2005). Characteristics of lymphatic endothelial cells in physiological and pathological conditions. Histology and Histopathology, 20, 155–175.

    PubMed  CAS  Google Scholar 

  5. Ji, R. C. (2006). Lymphatic endothelial cells, lymphangiogenesis, and extracellular matrix. Lymphatic Research and Biology, 4, 83–100.

    PubMed  CAS  Google Scholar 

  6. Kato, S., Shimoda, H., Ji, R. C., & Miura, M. (2006). Lymphangiogenesis and expression of specific molecules as lymphatic endothelial cell markers. Anatomical Science International, 81, 71–83.

    PubMed  Google Scholar 

  7. Padera, T. P., Kadambi, A., di Tomaso, E., Carreira, C. M., Brown, E. B., Boucher, Y., et al. (2002). Lymphatic metastasis in the absence of functional intratumor lymphatics. Science, 296, 1883–1886.

    PubMed  CAS  Google Scholar 

  8. Dadras, S. S., Paul, T., Bertoncini, J., Brown, L. F., Muzikansky, A., Jackson, D. G., et al. (2003). Tumor lymphangiogenesis: A novel prognostic indicator for cutaneous melanoma metastasis and survival. American Journal of Pathology, 162, 1951–1960.

    PubMed  Google Scholar 

  9. Krishnan, J., Kirkin, V., Steffen, A., Hegen, M., Weih, D., Tomarev, S., et al. (2003). Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Research, 63, 713–722.

    PubMed  CAS  Google Scholar 

  10. Skobe, M., Hamberg, L. M., Hawighorst, T., Schirner, M., Wolf, G. L., Alitalo, K., et al. (2001). Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. American Journal of Pathology, 159, 893–903.

    PubMed  CAS  Google Scholar 

  11. Skobe, M., Hawighorst, T., Jackson, D. G., Prevo, R., Janes, L., Velasco, P., et al. (2001). Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nature Medicine, 7, 192–198.

    PubMed  CAS  Google Scholar 

  12. Stacker, S. A., Caesar, C., Baldwin, M. E., Thornton, G. E., Williams, R. A., Prevo, R., et al. (2001). VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nature Medicine, 7, 186–191.

    PubMed  CAS  Google Scholar 

  13. Karpanen, T., Egeblad, M., Karkkainen, M. J., Kubo, H., Yla-Herttuala, S., Jaattela, M., et al. (2001). Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Research, 61, 1786–1790.

    PubMed  CAS  Google Scholar 

  14. Mandriota, S. J., Jussila, L., Jeltsch, M., Compagni, A., Baetens, D., Prevo, R., et al. (2001). Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO Journal, 20, 672–682.

    PubMed  CAS  Google Scholar 

  15. Schoppmann, S. F., Birner, P., Stockl, J., Kalt, R., Ullrich, R., Caucig, C., et al. (2002). Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. American Journal of Pathology, 161, 947–956.

    PubMed  CAS  Google Scholar 

  16. Rubbia-Brandt, L., Terris, B., Giostra, E., Dousset, B., Morel, P., & Pepper, M. S. (2004). Lymphatic vessel density and vascular endothelial growth factor-C expression correlate with malignant behavior in human pancreatic endocrine tumors. Clinical Cancer Research, 10, 6919–6928.

    PubMed  CAS  Google Scholar 

  17. Gombos, Z., Xu, X., Chu, C. S., Zhang, P. J., & Acs, G. (2005). Peritumoral lymphatic vessel density and vascular endothelial growth factor C expression in early-stage squamous cell carcinoma of the uterine cervix. Clinical Cancer Research, 11, 8364–8371.

    PubMed  CAS  Google Scholar 

  18. Maula, S. M., Luukkaa, M., Grenman, R., Jackson, D., Jalkanen, S., & Ristamaki, R. (2003). Intratumoral lymphatics are essential for the metastatic spread and prognosis in squamous cell carcinomas of the head and neck region. Cancer Research, 63, 1920–1926.

    PubMed  CAS  Google Scholar 

  19. Cursiefen, C., Ikeda, S., Nishina, P. M., Smith, R. S., Ikeda, A., Jackson, D., et al. (2005). Spontaneous corneal hem- and lymphangiogenesis in mice with destrin-mutation depend on VEGFR3 signaling. American Journal of Pathology, 166, 1367–1377.

    PubMed  CAS  Google Scholar 

  20. Witte, M. H., Jones, K., Wilting, J., Dictor, M., Selg, M., McHale, N., et al. (2006). Structure function relationships in the lymphatic system and implications for cancer biology. Cancer Metastasis Reviews, 25, 159–184.

    PubMed  Google Scholar 

  21. Leu, A. J., Berk, D. A., Lymboussaki, A., Alitalo, K., & Jain, R. K. (2000). Absence of functional lymphatics within a murine sarcoma: A molecular and functional evaluation. Cancer Research, 60, 4324–4327.

    PubMed  CAS  Google Scholar 

  22. He, Y., Rajantie, I., Pajusola, K., Jeltsch, M., Holopainen, T., Yla-Herttuala, S., et al. (2005). Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Research, 65, 4739–4746.

    PubMed  CAS  Google Scholar 

  23. Stacker, S. A., Achen, M. G., Jussila, L., Baldwin, M. E., & Alitalo, K. (2002). Lymphangiogenesis and cancer metastasis. Nature Reviews. Cancer, 2, 573–583.

    PubMed  CAS  Google Scholar 

  24. Kyzas, P. A., Geleff, S., Batistatou, A., Agnantis, N. J., & Stefanou, D. (2005). Evidence for lymphangiogenesis and its prognostic implications in head and neck squamous cell carcinoma. Journal of Pathology, 206, 170–177.

    PubMed  Google Scholar 

  25. Alitalo, K., & Carmeliet, P. (2002). Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cells, 1, 219–227.

    CAS  Google Scholar 

  26. Swartz, M. A., & Skobe, M. (2001). Lymphatic function, lymphangiogenesis, and cancer metastasis. Microscopy Research and Technique, 55, 92–99.

    PubMed  CAS  Google Scholar 

  27. Goldman, J., Le, T. X., Skobe, M., & Swartz, M. A. (2005). Overexpression of VEGF-C causes transient lymphatic hyperplasia but not increased lymphangiogenesis in regenerating skin. Circulation Research, 96, 1193–1199.

    PubMed  CAS  Google Scholar 

  28. Nathanson, S. D. (2003). Insights into the mechanisms of lymph node metastasis. Cancer, 98, 413–423.

    PubMed  Google Scholar 

  29. Isaka, N., Padera, T. P., Hagendoorn, J., Fukumura, D., & Jain, R. K. (2004). Peritumor lymphatics induced by vascular endothelial growth factor-C exhibit abnormal function. Cancer Research, 64, 4400–4404.

    PubMed  CAS  Google Scholar 

  30. He, Y., Rajantie, I., Ilmonen, M., Makinen, T., Karkkainen, M. J., Haiko, P., et al. (2004). Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Research, 64, 3737–3740.

    PubMed  CAS  Google Scholar 

  31. Cao, R., Bjorndahl, M. A., Gallego, M. I., Chen, S., Religa, P., Hansen, A. J., et al. (2006). Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action. Blood, 107, 3531–3536.

    PubMed  CAS  Google Scholar 

  32. Cao, R., Bjorndahl, M. A., Religa, P., Clasper, S., Garvin, S., Galter, D., et al. (2004). PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cells, 6, 333–345.

    CAS  Google Scholar 

  33. Zlotnik, A. (2004). Chemokines in neoplastic progression. Seminars in Cancer Biology, 14, 181–185.

    PubMed  CAS  Google Scholar 

  34. Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.

    PubMed  CAS  Google Scholar 

  35. Ohl, L., Mohaupt, M., Czeloth, N., Hintzen, G., Kiafard, Z., Zwirner, J., et al. (2004). CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity, 21, 279–288.

    PubMed  CAS  Google Scholar 

  36. Qu, P., Ji, R. C., & Kato, S. (2003). Histochemical analysis of lymphatic endothelial cells in the pancreas of non-obese diabetic mice. Journal of Anatomy, 203, 523–530.

    PubMed  CAS  Google Scholar 

  37. Qu, P., Ji, R. C., Shimoda, H., Miura, M., & Kato, S. (2004). Study on pancreatic lymphatics in nonobese diabetic mouse with prevention of insulitis and diabetes by adjuvant immunotherapy. The Anatomical Record. Part A, Discoveries in Molecular, Cellular and Evolutionary Biology, 281, 1326–1336.

    Google Scholar 

  38. Qu, P., Ji, R. C., & Kato, S. (2005). Expression of CCL21 and 5′-Nase on pancreatic lymphatics in nonobese diabetic mice. Pancreas, 31, 148–155.

    PubMed  CAS  Google Scholar 

  39. Banerji, S., Ni, J., Wang, S. X., Clasper, S., Su, J., Tammi, R., et al. (1999). LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. Journal of Cell Biology, 144, 789–801.

    PubMed  CAS  Google Scholar 

  40. Jackson, D. G. (2003). The lymphatics revisited: New perspectives from the hyaluronan receptor LYVE-1. Trends in Cardiovascular Medicine, 13, 1–7.

    PubMed  CAS  Google Scholar 

  41. Moldovan, N. I., Goldschmidt-Clermont, P. J., Parker-Thornburg, J., Shapiro, S. D., & Kolattukudy, P. E. (2000). Contribution of monocytes/macrophages to compensatory neovascularization: The drilling of metalloelastase-positive tunnels in ischemic myocardium. Circulation Research, 87, 378–384.

    PubMed  CAS  Google Scholar 

  42. Pytowski, B., Goldman, J., Persaud, K., Wu, Y., Witte, L., Hicklin, D. J., et al. (2005). Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. Journal of the National Cancer Institute, 97, 14–21.

    Article  PubMed  CAS  Google Scholar 

  43. Williams, C. S., Leek, R. D., Robson, A. M., Banerji, S., Prevo, R., Harris, A. L., et al. (2003). Absence of lymphangiogenesis and intratumoural lymph vessels in human metastatic breast cancer. Journal of Pathology, 200, 195–206.

    PubMed  CAS  Google Scholar 

  44. Sipos, B., Kojima, M., Tiemann, K., Klapper, W., Kruse, M. L., Kalthoff, H., et al. (2005). Lymphatic spread of ductal pancreatic adenocarcinoma is independent of lymphangiogenesis. Journal of Pathology, 207, 301–312.

    PubMed  CAS  Google Scholar 

  45. Kerjaschki, D., Regele, H. M., Moosberger, I., Nagy-Bojarski, K., Watschinger, B., et al. (2004). Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. Journal of the American Society of Nephrology, 15, 603–612.

    PubMed  CAS  Google Scholar 

  46. Baluk, P., Tammela, T., Ator, E., Lyubynska, N., Achen, M. G., Hicklin, D. J., et al. (2005). Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. Journal of Clinical Investigation, 115, 247–257.

    PubMed  CAS  Google Scholar 

  47. Kerjaschki, D. (2005). The crucial role of macrophages in lymphangiogenesis. Journal of Clinical Investigation, 115, 2316–2319.

    PubMed  CAS  Google Scholar 

  48. Ogawa, E., Takenaka, K., Yanagihara, K., Kurozumi, M., Manabe, T., Wada, H., et al. (2004). Clinical significance of VEGF-C status in tumour cells and stromal macrophages in non-small cell lung cancer patients. British Journal of Cancer, 91, 498–503.

    PubMed  CAS  Google Scholar 

  49. Ji, R. C., Qu, P., & Kato, S. (2003). Application of a new 5′-Nase monoclonal antibody specific for lymphatic endothelial cells. Laboratory Investigation, 83, 1681–1683.

    PubMed  Google Scholar 

  50. Ji, R. C., Miura, M., Qu, P., & Kato, S. (2004). Expression of VEGFR-3 and 5′-Nase in regenerating lymphatic vessels of the cutaneous wound healing. Microscopy Research and Technique, 64, 279–286.

    PubMed  CAS  Google Scholar 

  51. Ji, R. C., & Kato, S. (2001). Histochemical analysis of lymphatic endothelial cells in lymphostasis. Microscopy Research and Technique, 55, 70–80.

    PubMed  CAS  Google Scholar 

  52. Ji, R. C., & Kato, S. (2003). Lymphatic network and lymphangiogenesis in the gastric wall. Journal of Histochemistry and Cytochemistry, 51, 331–338.

    PubMed  CAS  Google Scholar 

  53. Farnsworth, R. H., Achen, M. G., & Stacker, S. A. (2006). Lymphatic endothelium: An important interactive surface for malignant cells. Pulmonary Pharmacology & Therapeutics, 19, 51–60.

    CAS  Google Scholar 

  54. Ji, R. C., & Kato, S. (2000). Intrinsic interrelation of lymphatic endothelia with nerve elements in the monkey urinary bladder. Anatomical Record, 259, 86–96.

    PubMed  CAS  Google Scholar 

  55. Azzali, G. (2006). On the transendothelial passage of tumor cell from extravasal matrix into the lumen of absorbing lymphatic vessel. Microvascular Research, 72, 74–85.

    PubMed  CAS  Google Scholar 

  56. Djonov, V., Andres, A. C., & Ziemiecki, A. (2001). Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microscopy Research and Technique, 52, 182–189.

    PubMed  CAS  Google Scholar 

  57. Breiteneder-Geleff, S., Soleiman, A., Kowalski, H., Horvat, R., Amann, G., Kriehuber, E., et al. (1999). Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: Podoplanin as a specific marker for lymphatic endothelium. American Journal of Pathology, 154, 385–394.

    PubMed  CAS  Google Scholar 

  58. Wigle, J. T., & Oliver, G. (1999). Prox1 function is required for the development of the murine lymphatic system. Cell, 98, 769–778.

    PubMed  CAS  Google Scholar 

  59. Kaipainen, A., Korhonen, J., Mustonen, T., van Hinsbergh, V. W., Fang, G. H., Dumont, D., et al. (1995). Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proceedings of the National Academy of Sciences of the United States of America, 92, 3566–3570.

    PubMed  CAS  Google Scholar 

  60. Kato, S., & Miyauchi, R. (1989). Enzyme–histochemical visualization of lymphatic capillaries in the mouse tongue: Light and electron microscopic study. Okajimas Folia Anatomica Japonica, 65, 391–403.

    PubMed  CAS  Google Scholar 

  61. Gunn, M. D., Tangemann, K., Tam, C., Cyster, J. G., Rosen, S. D., Williams, L. T. (1998). A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 95, 258–263.

    PubMed  CAS  Google Scholar 

  62. Laakkonen, P., Porkka, K., Hoffman, J. A., & Ruoslahti, E. (2002). A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nature Medicine, 8, 751–755.

    PubMed  CAS  Google Scholar 

  63. Gale, N. W., Thurston, G., Hackett, S. F., Renard, R., Wang, Q., McClain, J., et al. (2002). Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Developmental Cell, 3, 411–423.

    PubMed  CAS  Google Scholar 

  64. Albelda, S. M., Muller, W. A., Buck, C. A., & Newman, P. J. (1991). Molecular and cellular properties of PECAM-1 (endoCAM/CD31): A novel vascular cell–cell adhesion molecule. Journal of Cell Biology, 114, 1059–1068.

    PubMed  CAS  Google Scholar 

  65. Krause, D. S., Fackler, M. J., Civin, C. I., & May, W. S. (1996). CD34: Structure, biology, and clinical utility. Blood, 87, 1–13.

    PubMed  CAS  Google Scholar 

  66. Sauter, B., Foedinger, D., Sterniczky, B., Wolff, K., & Rappersberger, K. (1998). Immunoelectron microscopic characterization of human dermal lymphatic microvascular endothelial cells. Differential expression of CD31, CD34, and type IV collagen with lymphatic endothelial cells vs blood capillary endothelial cells in normal human skin, lymphangioma, and hemangioma in situ. Journal of Histochemistry and Cytochemistry, 46, 165–176.

    PubMed  CAS  Google Scholar 

  67. Schlingemann, R. O., Dingjan, G. M., Emeis, J. J., Blok, J., Warnaar, S. O., & Ruiter, D. J. (1985). Monoclonal antibody PAL-E specific for endothelium. Laboratory Investigation, 52, 71–76.

    PubMed  CAS  Google Scholar 

  68. Kahn, H. J., & Marks, A. (2002). A new monoclonal antibody, D2-40, for detection of lymphatic invasion in primary tumors. Laboratory Investigation, 82, 1255–1257.

    PubMed  Google Scholar 

  69. Schmelz, M., Moll, R., Kuhn, C., & Franke, W. W. (1994). Complexus adhaerentes, a new group of desmoplakin-containing junctions in endothelial cells: II. Different types of lymphatic vessels. Differentiation, 57, 97–117.

    PubMed  CAS  Google Scholar 

  70. Erhard, H., Rietveld, F. J., Brocker, E. B., de Waal, R. M., & Ruiter, D. J. (1996). Phenotype of normal cutaneous microvasculature. Immunoelectron microscopic observations with emphasis on the differences between blood vessels and lymphatics. Journal of Investigative Dermatology, 106, 135–140.

    PubMed  CAS  Google Scholar 

  71. Dagenais, S. L., Hartsough, R. L., Erickson, R. P., Witte, M. H., Butler, M. G., & Glover, T. W. (2004). Foxc2 is expressed in developing lymphatic vessels and other tissues associated with lymphedema–distichiasis syndrome. Gene Expression Patterns, 4, 611–619.

    PubMed  CAS  Google Scholar 

  72. Petrova, T. V., Karpanen, T., Norrmen, C., Mellor, R., Tamakoshi, T., Finegold, D., et al. (2004). Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nature Medicine, 10, 974–981.

    PubMed  CAS  Google Scholar 

  73. Wagner, D. D., Olmsted, J. B., & Marder, V. J. (1982). Immunolocalization of von Willebrand protein in Weibel–Palade bodies of human endothelial cells. Journal of Cell Biology, 95, 355–360.

    PubMed  CAS  Google Scholar 

  74. Miettinen, M., Lindenmayer, A. E., & Chaubal, A. (1994). Endothelial cell markers CD31, CD34, and BNH9 antibody to H- and Y-antigens—evaluation of their specificity and sensitivity in the diagnosis of vascular tumors and comparison with von Willebrand factor. Modern Pathology, 7, 82–90.

    PubMed  CAS  Google Scholar 

  75. Trzewik, J., Mallipattu, S. K., Artmann, G. M., Delano, F. A., & Schmid-Schonbein, G. W. (2001). Evidence for a second valve system in lymphatics: Endothelial microvalves. FASEB Journal, 15, 1711–1717.

    PubMed  CAS  Google Scholar 

  76. Helmlinger, G., Netti, P. A., Lichtenbeld, H. C., Melder, R. J., & Jain, R. K. (1997). Solid stress inhibits the growth of multicellular tumor spheroids. Nature Biotechnology, 15, 778–783.

    PubMed  CAS  Google Scholar 

  77. Zeng, Y., Opeskin, K., Baldwin, M. E., Horvath, L. G., Achen, M. G., Stacker, S. A., et al. (2004). Expression of vascular endothelial growth factor receptor-3 by lymphatic endothelial cells is associated with lymph node metastasis in prostate cancer. Clinical Cancer Research, 10, 5137–5144.

    PubMed  CAS  Google Scholar 

  78. Pettersson, A., Nagy, J. A., Brown, L. F., Sundberg, C., Morgan, E., Jungles, S., et al. (2000). Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Laboratory Investigation, 80, 99–115.

    Article  PubMed  CAS  Google Scholar 

  79. Beasley, N. J., Prevo, R., Banerji, S., Leek, R. D., Moore, J., van Trappen, P., et al. (2002). Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. Cancer Research, 62, 1315–1320.

    PubMed  CAS  Google Scholar 

  80. Crnic, I., Strittmatter, K., Cavallaro, U., Kopfstein, L., Jussila, L., Alitalo, K., et al. (2004). Loss of neural cell adhesion molecule induces tumor metastasis by up-regulating lymphangiogenesis. Cancer Research, 64, 8630–8638.

    PubMed  CAS  Google Scholar 

  81. Papoutsi, M., Siemeister, G., Weindel, K., Tomarev, S. I., Kurz, H., Schachtele, C., et al. (2000). Active interaction of human A375 melanoma cells with the lymphatics in vivo. Histochemistry and Cell Biology, 114, 373–385.

    PubMed  CAS  Google Scholar 

  82. Hirakawa, S., Kodama, S., Kunstfeld, R., Kajiya, K., Brown, L. F., & Detmar, M. (2005). VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. Journal of Experimental Medicine, 201, 1089–1099.

    PubMed  CAS  Google Scholar 

  83. Hoon, D. S., Kitago, M., Kim, J., Mori, T., Piris, A., Szyfelbein, K., et al. (2006). Molecular mechanisms of metastasis. Cancer Metastasis Reviews, 25, 203–220.

    PubMed  CAS  Google Scholar 

  84. Shields, J. D., Borsetti, M., Rigby, H., Harper, S. J., Mortimer, P. S., Levick, J. R., et al. (2004). Lymphatic density and metastatic spread in human malignant melanoma. British Journal of Cancer, 90, 693–700.

    PubMed  CAS  Google Scholar 

  85. Bjorndahl, M. A., Cao, R., Burton, J. B., Brakenhielm, E., Religa, P., Galter, D., et al. (2005). Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Research, 65, 9261–9268.

    PubMed  Google Scholar 

  86. Nagy, J. A., Vasile, E., Feng, D., Sundberg, C., Brown, L. F., Detmar, M. J., et al. (2002). Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. Journal of Experimental Medicine, 196, 1497–1506.

    PubMed  CAS  Google Scholar 

  87. Schmid-Schonbein, G. W. (2003). The second valve system in lymphatics. Lymphatic Research and Biology, 1, 25–29.

    PubMed  Google Scholar 

  88. Jain, R. K., & Fenton, B. T. (2002). Intratumoral lymphatic vessels: A case of mistaken identity or malfunction? Journal of National Cancer Institute, 94, 417–421.

    Google Scholar 

  89. Wong, S. Y., Haack, H., Crowley, D., Barry, M., Bronson, R. T., & Hynes, R. O. (2005). Tumor-secreted vascular endothelial growth factor-C is necessary for prostate cancer lymphangiogenesis, but lymphangiogenesis is unnecessary for lymph node metastasis. Cancer Research, 65, 9789–9798.

    PubMed  CAS  Google Scholar 

  90. Hall, F. T., Freeman, J. L., Asa, S. L., Jackson, D. G., & Beasley, N. J. (2003). Intratumoral lymphatics and lymph node metastases in papillary thyroid carcinoma. Archives of Otolaryngology—Head & Neck Surgery, 129, 716–719.

    Google Scholar 

  91. Straume, O., Jackson, D. G., & Akslen, L. A. (2003). Independent prognostic impact of lymphatic vessel density and presence of low-grade lymphangiogenesis in cutaneous melanoma. Clinical Cancer Research, 9, 250–256.

    PubMed  CAS  Google Scholar 

  92. Munoz-Guerra, M. F., Marazuela, E. G., Martin-Villar, E., Quintanilla, M., & Gamallo, C. (2004). Prognostic significance of intratumoral lymphangiogenesis in squamous cell carcinoma of the oral cavity. Cancer, 100, 553–560.

    PubMed  Google Scholar 

  93. Bono, P., Wasenius, V. M., Heikkila, P., Lundin, J., Jackson, D. G., & Joensuu, H. (2004). High LYVE-1-positive lymphatic vessel numbers are associated with poor outcome in breast cancer. Clinical Cancer Research, 10, 7144–7149.

    PubMed  CAS  Google Scholar 

  94. Vleugel, M. M., Bos, R., van der Groep, P., Greijer, A. E., Shvarts, A., Stel, H. V., et al. (2004). Lack of lymphangiogenesis during breast carcinogenesis. Journal of Clinical Pathology, 57, 746–751.

    PubMed  CAS  Google Scholar 

  95. Sipos, B., Klapper, W., Kruse, M. L., Kalthoff, H., Kerjaschki, D., & Kloppel, G. (2004). Expression of lymphangiogenic factors and evidence of intratumoral lymphangiogenesis in pancreatic endocrine tumors. American Journal of Pathology, 165, 1187–1197.

    PubMed  CAS  Google Scholar 

  96. Franchi, A., Gallo, O., Massi, D., Baroni, G., & Santucci, M. (2004). Tumor lymphangiogenesis in head and neck squamous cell carcinoma: A morphometric study with clinical correlations. Cancer, 101, 973–978.

    PubMed  Google Scholar 

  97. Franchi, A., Massi, D., Santucci, M., Masini, E., Degl’Innocenti, D. R., Magnelli, L., et al. (2006). Inducible nitric oxide synthase activity correlates with lymphangiogenesis and vascular endothelial growth factor-C expression in head and neck squamous cell carcinoma. Journal of Pathology, 208, 439–445.

    PubMed  CAS  Google Scholar 

  98. Fiedler, U., Christian, S., Koidl, S., Kerjaschki, D., Emmett, M. S., Bates, D. O., et al. (2006). The sialomucin CD34 is a marker of lymphatic endothelial cells in human tumors. American Journal of Pathology, 168, 1045–1053.

    PubMed  CAS  Google Scholar 

  99. Stefansson, I. M., Salvesen, H. B., & Akslen, L. A. (2006). Vascular proliferation is important for clinical progress of endometrial cancer. Cancer Research, 66, 3303–3309.

    PubMed  CAS  Google Scholar 

  100. Pepper, M. S., & Skobe, M. (2003). Lymphatic endothelium: Morphological, molecular and functional properties. Journal of Cell Biology, 163, 209–213.

    PubMed  CAS  Google Scholar 

  101. Cassella, M., & Skobe, M. (2002). Lymphatic vessel activation in cancer. Annals of the New York Academy of Sciences, 979, 120–130.

    Article  PubMed  CAS  Google Scholar 

  102. Mattila, M. M., Ruohola, J. K., Karpanen, T., Jackson, D. G., Alitalo, K., & Harkonen, P. L. (2002). VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumors. International Journal of Cancer, 98, 946–951.

    CAS  Google Scholar 

  103. Allan, A. L., George, R., Vantyghem, S. A., Lee, M. W., Hodgson, N. C., Engel, C. J., et al. (2006). Role of the integrin-binding protein osteopontin in lymphatic metastasis of breast cancer. American Journal of Pathology, 169, 233–246.

    PubMed  CAS  Google Scholar 

  104. Clarijs, R., Ruiter, D. J., & de Waal, R. M. (2001). Lymphangiogenesis in malignant tumours: Does it occur? Journal of Pathology, 193, 143–146.

    PubMed  CAS  Google Scholar 

  105. Cursiefen, C., Chen, L., Borges, L. P., Jackson, D., Cao, J., Radziejewski, C., et al. (2004). VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. Journal of the Clinical Investigation, 113, 1040–1050.

    CAS  Google Scholar 

  106. Valtola, R., Salven, P., Heikkila, P., Taipale, J., Joensuu, H., Rehn, M., et al. (1999). VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. American Journal of Pathology, 154, 1381–1390.

    PubMed  CAS  Google Scholar 

  107. Niki, T., Iba, S., Tokunou, M., Yamada, T., Matsuno, Y., & Hirohashi, S. (2000). Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma. Clinical Cancer Research, 6, 2431–2439.

    PubMed  CAS  Google Scholar 

  108. Achen, M. G., Jeltsch, M., Kukk, E., Makinen, T., Vitali, A., Wilks, A. F., et al. (1998). Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proceedings of the National Academy of Sciences of the United States of America, 95, 548–553.

    PubMed  CAS  Google Scholar 

  109. Stearns, M. E., Wang, M., Hu, Y., Kim, G., & Garcia, F. U. (2004). Expression of a flt-4 (VEGFR3) splicing variant in primary human prostate tumors. VEGF D and flt-4t (Delta773-1081) overexpression is diagnostic for sentinel lymph node metastasis. Laboratory Investigation, 84, 785–795.

    PubMed  CAS  Google Scholar 

  110. Kramer, R. H., Shen, X., & Zhou, H. (2005). Tumor cell invasion and survival in head and neck cancer. Cancer Metastasis Reviews, 24, 35–45.

    PubMed  CAS  Google Scholar 

  111. Al-Mehdi, A. B., Tozawa, K., Fisher, A. B., Shientag, L., Lee, A., & Muschel, R. J. (2000). Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: A new model for metastasis. Nature Medicine, 6, 100–102.

    PubMed  CAS  Google Scholar 

  112. Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour–host interface. Nature, 411, 375–379.

    PubMed  CAS  Google Scholar 

  113. Birner, P., Schindl, M., Obermair, A., Breitenecker, G., Kowalski, H., & Oberhuber, G. (2001). Lymphatic microvessel density as a novel prognostic factor in early-stage invasive cervical cancer. International Journal of Cancer, 95, 29–33.

    CAS  Google Scholar 

  114. Cuenca, A., Cheng, F., Wang, H., Brayer, J., Horna, P., Gu, L., et al. (2003). Extra-lymphatic solid tumor growth is not immunologically ignored and results in early induction of antigen-specific T-cell anergy: Dominant role of cross-tolerance to tumor antigens. Cancer Research, 63, 9007–9015.

    PubMed  CAS  Google Scholar 

  115. Clark, W. H. Jr, Elder, D. E., Guerry, D. 4th, Braitman, L. E., Trock, B. J., Schultz, D., et al. (1989). Model predicting survival in stage I melanoma based on tumor progression. Journal of National Cancer Institute, 81, 1893–1904.

    Google Scholar 

  116. Kitadai, Y., Kodama, M., Cho, S., Kuroda, T., Ochiumi, T., Kimura, S., et al. (2005). Quantitative analysis of lymphangiogenic markers for predicting metastasis of human gastric carcinoma to lymph nodes. International Journal of Cancer, 115, 388–392.

    CAS  Google Scholar 

  117. Mouta Carreira, C., Nasser, S. M., di Tomaso, E., Padera, T. P., Boucher, Y., Tomarev, S. I., et al. (2001). LYVE-1 is not restricted to the lymph vessels: Expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Research, 61, 8079–8084.

    PubMed  CAS  Google Scholar 

  118. Trojan, L., Michel, M. S., Rensch, F., Jackson, D. G., Alken, P., & Grobholz, R. (2004). Lymph and blood vessel architecture in benign and malignant prostatic tissue: Lack of lymphangiogenesis in prostate carcinoma assessed with novel lymphatic marker lymphatic vessel endothelial hyaluronan receptor (LYVE-1). Journal of Urology, 172, 103–107.

    PubMed  CAS  Google Scholar 

  119. Borgstein, P. J., Pijpers, R., Comans, E. F., van Diest, P. J., Boom, R. P., & Meijer, S. (1998). Sentinel lymph node biopsy in breast cancer: Guidelines and pitfalls of lymphoscintigraphy and gamma probe detection. Journal of the American College of Surgeons, 186, 275–283.

    PubMed  CAS  Google Scholar 

  120. Hofmann, U. B., Westphal, J. R., Van Muijen, G. N., & Ruiter, D. J. (2000). Matrix metalloproteinases in human melanoma. Journal of Investigative Dermatology, 115, 337–344.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Cheng Ji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, RC. Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: New insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev 25, 677–694 (2006). https://doi.org/10.1007/s10555-006-9026-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-9026-y

Keywords

Navigation