Skip to main content

In Vivo Imaging of Lymph Node Lymphangiogenesis by Immuno-Positron Emission Tomography

  • Protocol
  • First Online:
Molecular Dermatology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 961))

Abstract

Recently, our group and others found that cancer and inflammation can induce the expansion of the lymphatic vasculature (lymphangiogenesis) in draining lymph nodes in experimental animal models and in cancer patients (Hirakawa et al., J Exp Med 201:1089–1099, 2005; Qian et al., Cancer Res 66:10365–10376, 2006; Halin et al., Blood 110:3158–3167, 2007; Angeli et al., Immunity 24:203–215, 2006; Dadras et al., Mod Pathol 18:1232–1242, 2005). Since then, a growing number of reports have confirmed the importance of lymph node lymphangiogenesis in tumor metastasis, inflammation resolution, and dendritic cell migration to the lymph nodes (Angeli et al., Immunity 24:203–215, 2006; Hirakawa et al., Blood 109:1010–1017, 2007; Harrell et al., Am J Pathol 170:774–786, 2007; Kataru et al. Blood 113:5650–5659, 2009; Kataru et al., Immunity 34:96–107, 2011; Van den Eynden et al., Clin Cancer Res 13:5391–5397, 2007).

Conventionally, lymphangiogenesis in mice is detected by extensive quantitative analysis of lymphatic vessels in stained tissue sections. Here we present a noninvasive methodology that we have recently developed to image lymphangiogenesis in vivo in mice (Mumprecht et al., Cancer Res 70:8842–8851, 2010). This technique is based on the intravenous injection of a radioactively labeled antibody against the lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), which is almost exclusively expressed on lymphatic vessels (Banerji et al., J Cell Biol 144:789–801, 1999; Preyo et al., J Biol Chem 276:19420–19430, 2001). The accumulation of the injected anti-LYVE-1 antibody in the lymphatic vessels is subsequently visualized by positron emission tomography (PET). Lymphangiogenic lymph nodes emit a stronger radioactive signal than control lymph nodes because they take up more of the radiolabeled anti-LYVE-1 antibody and thus are distinguishable from normal lymph nodes in the PET images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201:1089–1099

    Article  PubMed  CAS  Google Scholar 

  2. Qian CN, Berghuis B, Tsarfaty G, Bruch M, Kort EJ, Ditlev J, Tsarfaty I, Hudson E, Jackson DG, Petillo D, Chen J, Resau JH, Teh BT (2006) Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res 66:10365–10376

    Article  PubMed  CAS  Google Scholar 

  3. Halin C, Tobler NE, Vigl B, Brown LF, Detmar M (2007) VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes. Blood 110:3158–3167

    Article  PubMed  CAS  Google Scholar 

  4. Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, Randolph GJ (2006) B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24:203–215

    Article  PubMed  CAS  Google Scholar 

  5. Dadras SS, Lange-Asschenfeldt B, Velasco P, Nguyen L, Vora A, Muzikansky A, Jahnke K, Hauschild A, Hirakawa S, Mihm MC, Detmar M (2005) Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol 18:1232–1242

    Article  PubMed  Google Scholar 

  6. Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109:1010–1017

    Article  PubMed  CAS  Google Scholar 

  7. Harrell MI, Iritani BM, Ruddell A (2007) Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am J Pathol 170:774–786

    Article  PubMed  Google Scholar 

  8. Kataru RP, Jung K, Jang C, Yang H, Schwendener RA, Baik JE, Han SH, Alitalo K, Koh GY (2009) Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113:5650–5659

    Article  PubMed  CAS  Google Scholar 

  9. Kataru RP, Kim H, Jang C, Choi DK, Koh BI, Kim M, Gollamudi S, Kim YK, Lee SH, Koh GY (2011) T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 34:96–107

    Article  PubMed  CAS  Google Scholar 

  10. Van den Eynden GG, Vandenberghe MK, van Dam PJ, Colpaert CG, van Dam P, Dirix LY, Vermeulen PB, Van Marck EA (2007) Increased sentinel lymph node lymphangiogenesis is associated with nonsentinel axillary lymph node involvement in breast cancer patients with a positive sentinel node. Clin Cancer Res 13:5391–5397

    Article  PubMed  Google Scholar 

  11. Mumprecht V, Honer M, Vigl B, Proulx ST, Trachsel E, Kaspar M, Banziger-Tobler NE, Schibli R, Neri D, Detmar M (2010) In vivo imaging of inflammation- and tumor-induced lymph node lymphangiogenesis by immuno-positron emission tomography. Cancer Res 70:8842–8851

    Article  PubMed  CAS  Google Scholar 

  12. Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, Jones M, Jackson DG (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144:789–801

    Article  PubMed  CAS  Google Scholar 

  13. Prevo R, Banerji S, Ferguson DJ, Clasper S, Jackson DG (2001) Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem 276:19420–19430

    Article  PubMed  CAS  Google Scholar 

  14. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  PubMed  CAS  Google Scholar 

  15. Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G, Krober SM, Greinix H, Rosenmaier A, Karlhofer F, Wick N, Mazal PR (2006) Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 12:230–234

    Article  PubMed  CAS  Google Scholar 

  16. Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, Jeltsch M, Petrova TV, Pytowski B, Stacker SA, Yla-Herttuala S, Jackson DG, Alitalo K, McDonald DM (2005) Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 115:247–257

    PubMed  CAS  Google Scholar 

  17. Zhang Q, Lu Y, Proulx ST, Guo R, Yao Z, Schwarz EM, Boyce BF, Xing L (2007) Increased lymphangiogenesis in joints of mice with inflammatory arthritis. Arthritis Res Ther 9:R118

    Article  PubMed  Google Scholar 

  18. Norrmen C, Tammela T, Petrova TV, Alitalo K (2011) Biological basis of therapeutic lymphangiogenesis. Circulation 123:1335–1351

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by National Institutes of Health grant CA69184, Swiss National Science Foundation grant 3100A0-108207, Austrian Science Foundation grant S9408-B11, Cancer League Zurich, and Oncosuisse and Commission of the European Communities grant LSHC-CT-2005-518178 (M.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Detmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mumprecht, V., Detmar, M. (2013). In Vivo Imaging of Lymph Node Lymphangiogenesis by Immuno-Positron Emission Tomography. In: Has, C., Sitaru, C. (eds) Molecular Dermatology. Methods in Molecular Biology, vol 961. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-227-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-227-8_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-226-1

  • Online ISBN: 978-1-62703-227-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics