Skip to main content
Log in

GC/IMS and GC/MS analysis of pre-concentrated medical and biological samples

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Ion mobility spectrometry (IMS) is a well-known analytical method for the detection of CWAs and explosives since many years. Coupling IMS to GC pre-separation, new application fields in medicine and biology could be opened, dealing with complex and humid mixtures. However, identification of unknowns in such a complex sample is challenging and can only be achieved by parallel GC/MS analysis, thus obtaining a proposal for the responsible compound for validation via reference substances by GC/IMS again. The available adsorption tools for such accompanying GC/MS analysis have their particular drawbacks (e.g. problematic quantification for SPME, high sample volumes for adsorption tubes). Therefore miniaturised adsorption needles (NeedleTrap) were applied to both GC/IMS and GC/MS for validation of their reproducibility. It could be demonstrated that the needles can even be used for appropriate quantification when the adsorbent and the sample volume are adapted properly to the concentration range, the compounds of interest and humidity of the sample. The method is very flexible with regard to the concentration range by variation of the sample volume (e.g. 20 mL for pptV, 10 mL for lower ppbV or 1 mL for ppmV) and with regard to the compounds of interest by application of common adsorption materials optimised for the relevant substance group. Such materials are available commercially in a broad variability. Therefore, the miniaturised adsorption needles are a helpful complementary sampling method for any GC/MS or GC/IMS investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eiceman GA, Karpas Z (1994) Ion mobility spectrometry. CRC Press, Boca Raton

    Google Scholar 

  2. Borsdorf H, Mayer T, Zarejousheghania M, Eiceman GA (2011) Recent developments in ion mobility spectrometry. Appl Spectrosc Rev 46(6):472–521

    Article  Google Scholar 

  3. Vautz W, Baumbach JI (2008) Exemplar application of multi-capillary column ion mobility spectrometry for biological and medical purpose. Int J Ion Mobil Spectrom 11(1–4):35–41

    Article  CAS  Google Scholar 

  4. Jünger M, Vautz W, Kuhns M, Hofmann L, Ulbricht S, Baumbach JI, Quintel M, Perl T (2012) Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria. Appl Microbiol Biotechnol 93(6):2603–2614

    Article  Google Scholar 

  5. Vautz W, Slodzynski R, Hariharan C, Seifert L, Nolte J, Fobbe R, Sielemann S, Cao Lao B, Hildebrand L (2013) Detection of metabolites of trapped humans using ion mobility spectrometry coupled to gas-chromatography. Anal Chem 85(4):2135–2142

    Article  CAS  Google Scholar 

  6. Guharay SK, McLean VA, Dwivedi P, Hill HH (2008) Ion mobility spectrometry: ion source development and applications in physical and biological sciences. Plasma Sci 36(4):1458–1470

    Article  CAS  Google Scholar 

  7. Karpas Z, Chaim W, Gdalevskya R, Tilmana B, Lorbera A (2002) Novel application for ion mobility spectrometry: diagnosing vaginal infections through measurement of biogenic amines. Anal Chim Acta 474(1–2):115–123

    Article  CAS  Google Scholar 

  8. Leonhardt JW (2004) A new ppb-gas analyzer by means of GC-ion mobility spectrometry (GC-IMS). J Radioanal Nucl Chem 257(1):133–139

    Article  Google Scholar 

  9. Vautz W, Baumbach JI (2008) Analysis of bio-processes using ion mobility spectrometry. Eng Life Sci 8(1):19–25

    Article  CAS  Google Scholar 

  10. Vautz W, Mauntz W, Engell S, Baumbach JI (2009) Monitoring of emulsion polymerisation processes using ion mobility spectrometry—a pilot study. Macromol React Eng 3(2–3):85–90

    Article  CAS  Google Scholar 

  11. Roehl JE (1991) Environmental and process applications for ion mobility spectrometry. Appl Spectrosc Rev 26(1–2):1–57. doi:10.1080/05704929108053459

    Article  CAS  Google Scholar 

  12. Budde KJ, Holzapfel WJ, Beyer MM (1995) Application of ion mobility spectrometry to semiconductor technology: outgassings of advanced polymers under thermal stress. J Electrochem Soc 142(3):888–897

    Article  CAS  Google Scholar 

  13. Haick H, Broza YY, Mochalski, Ruzsanyib V, Anton Amann A (2014) Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev. doi:10.1039/c3cs60329f

    Google Scholar 

  14. Amann A, Spanel P, Smith D (2007) Breath analysis: the approach towards clinical applications. Mini-Rev Med Chem 7(2):115–129

    Article  CAS  Google Scholar 

  15. Basanta M, Jarvis RM, Xu Y, Blackburn G, Tal-Singer R, Woodcock A, Singh D, Goodacre R, Thomas CLP, Fowler SJ (2010) Non-invasive metabolomic analysis of breath using differential mobility spectrometry in patients with chronic obstructive pulmonary disease and healthy smokers. Analyst 135:315–320

    Article  CAS  Google Scholar 

  16. Miekisch W, Schubert JK (2006) From highly sophisticated analytical techniques to life-saving diagnostics: technical developments in breath analysis. Trends Anal Chem 25(7):665–673

    Article  CAS  Google Scholar 

  17. Pagonas N, Vautz W, Seifert L, Slodzinski R, Jankowski J, Zidek W, Westhoff TH (2012) Volatile organic compounds in uremia. PLoS ONE 7(9):1–9

    Article  Google Scholar 

  18. Vautz W, Nolte J, Bufe A, Baumbach JI, Peters M (2010) Analyses of mouse breath with ion mobility spectrometry: a feasibility study. J Appl Physiol 108(3):697–704

    Article  Google Scholar 

  19. Vautz W, Nolte J, Fobbe R, Baumbach JI (2009) Breath analysis—performance and potential of ion mobility spectrometry. J Breath Res 3(3):036004-1–036004-8

    Article  Google Scholar 

  20. Ruzsanyi V, Mochalski P, Schmid A, Wiesenhofer H, Klieber M, Hinterhuber H, Amann A (2012) Ion mobility spectrometry for detection of skin volatiles. Anal Technol Biomed Life Sci 911(1):84–92

    Article  CAS  Google Scholar 

  21. Dwivedi P, Schultz AJ, Herbert HH (2010) Metabolic profiling of human blood by high resolution ion mobility mass spectrometry (IM-MS). Int J Mass Spectrom 1–3:78–90

    Article  Google Scholar 

  22. Bödeker B, Vautz W, Baumbach JI (2008) Peak Comparison in MCC/IMS - Data - Searching for potential biomarkers in human breath data. Int J Ion Mobil Spectrom 11(1–4):89–93

    Article  Google Scholar 

  23. Hariharan C, Baumbach JI, Vautz W (2010) Linearized equations for the reduced ion mobilities of polar aliphatic organic compounds. Anal Chem 82(1):427–431

    Article  CAS  Google Scholar 

  24. Perl T, Bödeker B, Jünger M, Nolte J, Vautz W (2010) Alignment of retention time obtained from multicapillary column gas chromatography used for VOC analysis with ion mobility spectrometry. Anal Bioanal Chem 397(6):2385–2394

    Article  CAS  Google Scholar 

  25. Crittenden B, Thomas WJ (1998) Adsorption technology & design. Butterworth-Heinemann, Oxford

    Google Scholar 

  26. Mieth M, Kischkel S, Schubert JK, Hein D, Miekisch W (2009) Multibed needle trap devices for on site sampling and preconcentration of volatile breath biomarkers. Anal Chem 81:5851–5857

    Article  CAS  Google Scholar 

  27. Mieth M, Schubert JK, Gröger T, Sabel B, Kischkel S, Fuchs P, Hein D, Zimmermann R, Miekisch W (2010) Automated needle trap heart-cut GC/MS and needle trap comprehensive two-dimensional GC/TOF-MS for breath gas analysis in the clinical environment. Anal Chem 82(6):2541–2551

    Article  CAS  Google Scholar 

  28. Trefza P, Kischkel S, Hein D, James ES, Schubert JK, Miekisch W (2012) Needle trap micro-extraction for VOC analysis: effects of packing materials and desorption parameters. J Chromatogr A 1219:29–38

    Article  Google Scholar 

  29. Lord HL, Zhan W, Pawliszyn J (2010) Fundamentals and applications of needle trap devices—a critical review. Anal Chim Acta 677:3–18

    Article  CAS  Google Scholar 

  30. Warren JM, Pawliszyn J (2011) Development and evaluation of needle trap device geometry and packing methods for automated and manual analysis. J Chromatogr A 1218:8982–8988

    Article  CAS  Google Scholar 

  31. Li X, Ouyang G, Lord H, Pawliszyn J (2010) Theory and validation of solid-phase microextraction and needle trap devices for aerosol sample. Anal Chem 82:9521–9527

    Article  CAS  Google Scholar 

  32. Wang A, Fang F, Pawliszyn J (2005) Sampling and determination of volatile organic compounds with needle trap devices. J Chromatogr A 1072(1):127–136

    Article  CAS  Google Scholar 

  33. Niri VH, Eom I-Y, Kermani FR, Jawliszyn J (2009) Sampling free and particle-bound chemicals using solid-phase microextraction and needle trap device simultaneously. J Sep Sci 32:1075–1080

    Article  CAS  Google Scholar 

  34. Bödeker B, Vautz W, Baumbach JI (2008) Peak Finding and Referencing in MCC/IMS-Data. Int J Ion Mobil Spectrom 11(1–4):83–87

    Article  Google Scholar 

  35. Bödeker B, Vautz W, Baumbach JI (2008) Visualisation of MCC/IMS - data. Int J Ion Mobil Spectrom 11(1–4):77–81

    Article  Google Scholar 

  36. Bunkowski A (2010) Software tool for coupling chromatographic total ion current dependencies of GC/MSD and MCC/IMS. Int J Ion Mobil Spectrom 13(3–4):169–175

    Article  CAS  Google Scholar 

  37. Loyek C, Bunkowski A, Vautz W, Nattkemper TW (2011) Web2.0 paves new ways for collaborative and exploratory analysis of Chemical Compounds in Spectrometry Data. J Int Bioinforma 8(2):1–10

    Google Scholar 

  38. Vautz W, Schmäh M (2009) HovaCAL®—a generator for multi-component humid calibration gases. Int J Ion Mobil Spectrom 12(4):139–147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Bundesministerium für Bildung und Forschung and the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen is greatfully acknowledged. Furthermore, the invaluable support of Rita Fobbe at GC/MS was indispensable for this study. This research was funded by the European Union as part of the project “Detection of olfactory traces by orthogonal gas identification technologies” (DOGGIES), a collaborative project (No. 285446) funded under call identifier FP7-SEC-20011-1, which is part of the Seventh Framework Program. In particular, Jean-Jacques Filippi from the Institut de Chimie de Nice, France gave substantial support with synthetic sweat compounds. Last but not least, the authors would like to express their gratitude to all the volunteers supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Vautz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vautz, W., Seifert, L., Liedtke, S. et al. GC/IMS and GC/MS analysis of pre-concentrated medical and biological samples. Int. J. Ion Mobil. Spec. 17, 25–33 (2014). https://doi.org/10.1007/s12127-014-0146-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-014-0146-8

Keywords

Navigation