Skip to main content

Application of Separation Techniques in Analytics of Biologically Relevant Sulfur Compounds

  • Reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

It is hard to overestimate the role of sulfur compounds in the proper functioning of the living organisms including humans. Thus, monitoring of the sulfur-possessing molecules, both in biological fluids and tissues, appears as one of the main issues in the modern analytical chemistry. This chapter summarizes the most important, up-to-date information concerning practical use of separation techniques, including high-performance liquid chromatography, capillary electrophoresis, and gas chromatography in analytics of biological fluids in the context of determination of biologically important sulfur compounds. Essential information concerning their chemical characteristic as well as association with diseases is also included. In particular, work focuses on problems dealing with sample preparation and separation issues. Selected important experimental details of analytical procedures are reviewed. Importantly, advantages, pitfalls, and typical limitations of mentioned methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stachniuk, J., Kubalczyk, P., Furmaniak, P., & Głowacki, R. (2016). A versatile method for analysis of saliva, plasma and urine for total thiols using HPLC with UV detection. Talanta, 155, 70–77. https://doi.org/10.1016/j.talanta.2016.04.031

    Article  CAS  PubMed  Google Scholar 

  2. Paul, B., & Sbodio, J. (2018). Cysteine metabolism in neuronal redox homeostasis. Trends in Pharmacological Sciences, 39, 513–524. https://doi.org/10.1016/j.tips.2018.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Włodek, L., & Bald, E. (2003). Biotiole w warunkach fizjologicznych, patologicznych i w terapii. Wydawnictwo Uniwersytetu Jagiellońskiego.

    Google Scholar 

  4. Carter, R. N., & Morton, N. M. (2016). Cysteine and hydrogen sulphide in the regulation of metabolism: Insights from genetics and pharmacology. The Journal of Pathology, 238, 321–332. https://doi.org/10.1002/path.4659

    Article  CAS  PubMed  Google Scholar 

  5. Poole, L. B. (2015). The basics of thiols and cysteines in redox biology and chemistry. Free Radical Biology and Medicine, 80, 148–157. https://doi.org/10.1016/j.freeradbiomed.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  6. Dolphin, D. (1989). Glutathione: Chemical, biochemical, and medical aspects. In D. Dolphin, R. Poulson, & O. Avramović (Eds.), Coenzymes and cofactors (pp. 438–456). Wiley.

    Google Scholar 

  7. Obradovic, M., Zaric, B., Haidara, M., & Isenovic, E. R. (2018). Link between homocysteine and cardiovascular diseases. Current Pharmacology Reports, 4, 1–9. https://doi.org/10.1007/s40495-017-0119-9

    Article  CAS  Google Scholar 

  8. Jakubowski, H., & Głowacki, R. (2011). Chemical biology of homocysteine thiolactone and related metabolites. Advances in Clinical Chemistry, 55, 81–103. https://doi.org/10.1016/B978-0-12-387042-1.00005-8

    Article  CAS  PubMed  Google Scholar 

  9. Chwatko, G., & Jakubowski, H. (2005). Urinary excretion of homocysteine-thiolactone in humans. Clinical Chemistry, 51, 408–415. https://doi.org/10.1373/clinchem.2004.042531

    Article  CAS  PubMed  Google Scholar 

  10. Piechocka, J., Wrońska, M., Chwatko, G., Jakubowski, H., & Głowacki, R. (2020). Quantification of homocysteine thiolactone in human saliva and urine by gas chromatography-mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1149, 122155. https://doi.org/10.1016/j.jchromb.2020.122155

    Article  CAS  PubMed  Google Scholar 

  11. Głowacki, R., Bald, E., & Jakubowski, H. (2011). An on-column derivatization method for the determination of homocysteine-thiolactone and protein N-linked homocysteine. Amino Acids, 41, 187–194. https://doi.org/10.1007/s00726-010-0521-7

    Article  CAS  PubMed  Google Scholar 

  12. Głowacki, R., Borowczyk, K., & Bald, E. (2014). Determination of Nε-homocysteinyl-lysine and γ-glutamylcysteine in plasma by liquid chromatography with UV-detection. Journal of Analytical Chemistry, 69, 583–589. https://doi.org/10.1134/S1061934814060082

    Article  CAS  Google Scholar 

  13. Spinella, R., Sawhney, R., & Jalan, R. (2016). Albumin in chronic liver disease: Structure, functions and therapeutic implications. Hepatology International, 10, 124–132. https://doi.org/10.1007/s12072-015-9665-6

    Article  PubMed  Google Scholar 

  14. Borowczyk, K., Wyszczelska-Rokiel, M., Kubalczyk, P., & Głowacki, R. (2015). Simultaneous determination of albumin and low-molecular-mass thiols in plasma by HPLC with UV detection. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 981–982, 57–64. https://doi.org/10.1016/j.jchromb.2014.12.032

    Article  CAS  PubMed  Google Scholar 

  15. Maseda, C., Hayakawa, A., Okuda, K., Asari, M., Tanaka, H., Yamada, H., Jin, S., Horioka, K., Matoba, K., Shiono, H., Matsubara, K., & Shimizu, K. (2017). Liquid chromatography-tandem mass spectrometry method for the determination of thiosulfate in human blood and urine as an indicator of hydrogen sulfide poisoning. Legal Medicine, 24, 67–74. https://doi.org/10.1016/j.legalmed.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  16. Chwatko, G., & Bald, E. (2009). Determination of thiosulfate in human urine by high performance liquid chromatography. Talanta, 79, 229–234. https://doi.org/10.1016/j.talanta.2009.03.040

    Article  CAS  PubMed  Google Scholar 

  17. Głowacki, R., Stachniuk, J., Borowczyk, K., & Jakubowski, H. (2016). Quantification of homocysteine and cysteine by derivatization with pyridoxal 5′-phosphate and hydrophilic interaction liquid chromatography. Analytical and Bioanalytical Chemistry, 408, 1935–1941. https://doi.org/10.1007/s00216-016-9308-3

  18. Furmaniak, P., Kubalczyk, P., Stachniuk, J., & Głowacki, R. (2016). Novel MEKC method for determination of sodium 2-mercaptoethanesulfonate in human plasma with in-capillary derivatization and UV detection. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1027, 88–95. https://doi.org/10.1016/j.jchromb.2016.05.032

    Article  CAS  PubMed  Google Scholar 

  19. Chwatko, G., Krawczyk, M., Iciek, M., Kamińska, A., Bilska-Wilkosz, A., Marcykiewicz, B., & Głowacki, R. (2019). Determination of lipoic acid in human plasma by high-performance liquid chromatography with ultraviolet detection. Arabian Journal of Chemistry, 12, 4878–4886. https://doi.org/10.1016/j.arabjc.2016.10.006

    Article  CAS  Google Scholar 

  20. Borowczyk, K., Chwatko, G., Kubalczyk, P., Jakubowski, H., Kubalska, J., & Głowacki, R. (2016). Simultaneous determination of methionine and homocysteine by on-column derivatization with o-phtaldialdehyde. Talanta, 161, 917–924. https://doi.org/10.1016/j.talanta.2016.09.039

    Article  CAS  PubMed  Google Scholar 

  21. Kubalczyk, P., Bald, E., Furmaniak, P., & Głowacki, R. (2014). Simultaneous determination of total homocysteine and cysteine in human plasma by capillary zone electrophoresis with pH-mediated sample stacking. Analytical Methods, 6, 4138–4143. https://doi.org/10.1039/c4ay00287c

    Article  CAS  Google Scholar 

  22. Forgacsova, A., Galba, J., Mojzisova, J., Mikus, P., Piestansky, J., & Kovac, A. (2019). Ultra-high performance hydrophilic interaction liquid chromatography – Triple quadrupole tandem mass spectrometry method for determination of cysteine, homocysteine, cysteinyl-glycine and glutathione in rat plasma. Journal of Pharmaceutical and Biomedical Analysis, 164, 442–451. https://doi.org/10.1016/j.jpba.2018.10.053

    Article  CAS  PubMed  Google Scholar 

  23. Ivanov, A. V., Bulgakova, P. O., Virus, E. D., Kruglova, M. P., Alexandrin, V. V., Gadieva, V. A., Luzyanin, B. P., Kushlinskii, N. E., Fedoseev, A. N., & Kubatiev, A. A. (2017). Capillary electrophoresis coupled with chloroform-acetonitrile extraction for rapid and highly selective determination of cysteine and homocysteine levels in human blood plasma and urine. Electrophoresis, 38, 2646–2653. https://doi.org/10.1002/elps.201700133

    Article  CAS  PubMed  Google Scholar 

  24. Jiang, Y., Mistretta, B., Elsea, S., & Sun, Q. (2017). Simultaneous determination of plasma total homocysteine and methionine by liquid chromatography-tandem mass spectrometry. Clinica Chimica Acta, 464, 93–97. https://doi.org/10.1016/j.cca.2016.11.017

    Article  CAS  Google Scholar 

  25. Sun, Y., Yao, T., Guo, X., Peng, Y., & Zheng, J. (2016). Simultaneous assessment of endogenous thiol compounds by LC–MS/MS. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1029–1030, 213–221. https://doi.org/10.1016/j.jchromb.2016.06.024

    Article  CAS  PubMed  Google Scholar 

  26. Isokawa, M., Shimosawa, T., Funatsu, T., & Tsunoda, M. (2016). Determination and characterization of total thiols in mouse serum samples using hydrophilic interaction liquid chromatography with fluorescence detection and mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1019, 59–65. https://doi.org/10.1016/j.jchromb.2015.11.038

    Article  CAS  PubMed  Google Scholar 

  27. Cieslarova, Z., Lopes, F. S., do Lago, C. L., França, M. C., & Colnaghi Simionato, A. V. (2017). Capillary electrophoresis tandem mass spectrometry determination of glutamic acid and homocysteine’s metabolites: Potential biomarkers of amyotrophic lateral sclerosis. Talanta, 170, 63–68. https://doi.org/10.1016/j.talanta.2017.03.103

    Article  CAS  PubMed  Google Scholar 

  28. Baldassarre, M., Naldi, M., Domenicali, M., Volo, S., Pietra, M., Dondi, F., Caraceni, P., & Peli, A. (2017). Simple and rapid LC–MS method for the determination of circulating albumin microheterogeneity in veal calves exposed to heat stress. Journal of Pharmaceutical and Biomedical Analysis, 144, 263–268. https://doi.org/10.1016/j.jpba.2017.04.041

    Article  CAS  PubMed  Google Scholar 

  29. Tan, B., Jin, S., Sun, J., Gu, Z., Sun, X., Zhu, Y., Huo, K., Cao, Z., Yang, P., Xin, X., Liu, X., Pan, L., Qiu, F., Jiang, J., Jia, Y., Ye, F., Xie, Y., & Zhu, Y. Z. (2017). New method for quantification of gasotransmitter hydrogen sulfide in biological matrices by LC-MS/MS. Scientific Reports, 7, 1–12. https://doi.org/10.1038/srep46278

    Article  CAS  Google Scholar 

  30. Sutton, T. R., Minnion, M., Barbarino, F., Koster, G., Fernandez, B. O., Cumpstey, A. F., Wischmann, P., Madhani, M., Frenneaux, M. P., Postle, A., Cortese-Krott, M. M., & Feelisch, M. (2018). A robust and versatile mass spectrometry platform for comprehensive assessment of the thiol redox metabolome. Redox Biology, 16, 359–380. https://doi.org/10.1016/J.REDOX.2018.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shurubor, Y. I., D’Aurelio, M., Clark-Matott, J., Isakova, E. P., Deryabina, Y. I., Beal, M. F., Cooper, A. J. L., & Krasnikov, B. F. (2017). Determination of coenzyme A and acetyl-coenzyme A in biological samples using HPLC with UV detection. Molecules, 22, 1388. https://doi.org/10.3390/molecules22091388

    Article  CAS  PubMed Central  Google Scholar 

  32. Wrońska, M., Chwatko, G., Borowczyk, K., Piechocka, J., Kubalczyk, P., & Głowacki, R. (2018). Application of GC–MS technique for the determination of homocysteine thiolactone in human urine. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1099, 18–24. https://doi.org/10.1016/j.jchromb.2018.09.009

    Article  CAS  PubMed  Google Scholar 

  33. Klapkova, E., Fortova, M., Prusa, R., Moravcova, L., & Kotaska, K. (2016). Determination of urine albumin by new simple high-performance liquid chromatography method. Journal of Clinical Laboratory Analysis, 30, 1226–1231. https://doi.org/10.1002/jcla.22007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kamińska, A., & Chwatko, G. (2020). Estimation of lipoyllysine content in meat and its antioxidative capacity. Journal of Agricultural and Food Chemistry, 68, 10992–10999. https://doi.org/10.1021/acs.jafc.0c03778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kamińska, A., Głowacka, I. E., Pasternak, B., Głowacki, R., & Chwatko, G. (2019). The first method for determination of lipoyllysine in human urine after oral lipoic acid supplementation. Bioanalysis, 11, 1359–1373. https://doi.org/10.4155/bio-2019-0011

    Article  CAS  PubMed  Google Scholar 

  36. Delgado-Povedano, M. M., Calderón-Santiago, M., Priego-Capote, F., & Luque De Castro, M. D. (2016). Study of sample preparation for quantitative analysis of amino acids in human sweat by liquid chromatography-tandem mass spectrometry. Talanta, 146, 310–317. https://doi.org/10.1016/j.talanta.2015.07.066

    Article  CAS  PubMed  Google Scholar 

  37. Kamińska, A., Olejarz, P., Borowczyk, K., Głowacki, R., & Chwatko, G. (2018). Simultaneous determination of total homocysteine, cysteine, glutathione, and N-acetylcysteine in brain homogenates by HPLC. Journal of Separation Science, 41, 3241–3249. https://doi.org/10.1002/jssc.201800381

    Article  CAS  PubMed  Google Scholar 

  38. Kubalczyk, P., Borowczyk, K., Chwatko, G., & Głowacki, R. (2015). Simple micellar electrokinetic chromatography method for the determination of hydrogen sulfide in hen tissues. Electrophoresis, 36, 1028–1032. https://doi.org/10.1002/elps.201400518

    Article  CAS  PubMed  Google Scholar 

  39. Odachowska, A., Godlewska, M., Turkowicz, M., Mateuszczyk, P., Iwanowicz, M., & Karpinska, J. (2017). Studies on reaction of reduced lipoic acid with Mukaiyama reagent and its application for pharmaceutical and food analysis. Journal of Liquid Chromatography and Related Technologies, 40, 126–132. https://doi.org/10.1080/10826076.2017.1293548

    Article  CAS  Google Scholar 

  40. Defaix, C., Aymes, A., Albe Slabi, S., Basselin, M., Mathé, C., Galet, O., & Kapel, R. (2019). A new size-exclusion chromatography method for fast rapeseed albumin and globulin quantification. Food Chemistry, 287, 151–159. https://doi.org/10.1016/j.foodchem.2019.01.209

    Article  CAS  PubMed  Google Scholar 

  41. Kuśmierek, K., Chwatko, G., Głowacki, R., Kubalczyk, P., & Bald, E. (2011). Ultraviolet derivatization of low-molecular-mass thiols for high performance liquid chromatography and capillary electrophoresis analysis. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 879, 1290–1307. https://doi.org/10.1016/j.jchromb.2010.10.035

    Article  CAS  PubMed  Google Scholar 

  42. Kubalczyk, P., & Głowacki, R. (2017). Determination of lipoic acid in human urine by capillary zone electrophoresis. Electrophoresis, 38, 1800–1805. https://doi.org/10.1002/elps.201700002

    Article  CAS  PubMed  Google Scholar 

  43. Tsai, C. J., Liao, F. Y., Weng, J. R., & Feng, C. H. (2017). Tandem derivatization combined with salting-out assisted liquid–liquid microextraction for determination of biothiols in urine by gas chromatography–mass spectrometry. Journal of Chromatography. A, 1524, 29–36. https://doi.org/10.1016/j.chroma.2017.09.069

    Article  CAS  PubMed  Google Scholar 

  44. Duan, Y. J., Zhang, L. Y., Guo, X. F., & Wang, H. (2016). A CE-LIF method based on long wavelength fluorescence labeling for the analysis of thiols in human urine. Electrophoresis, 37, 2097–2105. https://doi.org/10.1002/elps.201600148

    Article  CAS  PubMed  Google Scholar 

  45. Lee, D.-Y., Huang, W.-C., Gu, T.-J., & Chang, G.-D. (2018). Quantitative and comparative liquid chromatography-electrospray ionization-mass spectrometry analyses of hydrogen sulfide and thiol metabolites derivaitized with 2-iodoacetanilide isotopologues. Journal of Chromatography. A, 1552, 43–52. https://doi.org/10.1016/j.chroma.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  46. Ditrói, T., Nagy, A., Martinelli, D., Rosta, A., Kožich, V., & Nagy, P. (2019). Comprehensive analysis of how experimental parameters affect H2S measurements by the monobromobimane method. Free Radical Biology and Medicine, 136, 146–158. https://doi.org/10.1016/j.freeradbiomed.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  47. Kubalczyk, P., Chwatko, G., & Głowacki, R. (2016). Fast and simple MEKC sweeping method for determination of thiosulfate in urine. Electrophoresis, 37, 1155–1160. https://doi.org/10.1002/elps.201500411

    Article  CAS  PubMed  Google Scholar 

  48. Piechocka, J., Wrońska, M., & Głowacki, R. (2020). Chromatographic strategies for the determination of aminothiols in human saliva. Trends in Analytical Chemistry, 126, 115866. https://doi.org/10.1016/j.trac.2020.115866

    Article  CAS  Google Scholar 

  49. Furmaniak, P., Kubalczyk, P., & Głowacki, R. (2014). Determination of homocysteine thiolactone in urine by field amplified sample injection and sweeping MEKC method with UV detection. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 961, 36–41. https://doi.org/10.1016/j.jchromb.2014.04.051

    Article  CAS  PubMed  Google Scholar 

  50. Piechocka, J., Wieczorek, M., & Głowacki, R. (2020). Gas chromatography–mass spectrometry based approach for the determination of methionine-related sulfur-containing compounds in human saliva. International Journal of Molecular Sciences, 21, 1–18. https://doi.org/10.3390/ijms21239252

    Article  CAS  Google Scholar 

  51. Jakubowski, H. (2002). The determination of homocysteine-thiolactone in biological samples. Analytical Biochemistry, 308, 112–119. https://doi.org/10.1016/S0003-2697(02)00224-5

    Article  CAS  PubMed  Google Scholar 

  52. Chwatko, G., & Jakubowski, H. (2005). The determination of homocysteine-thiolactone in human plasma. Analytical Biochemistry, 337, 271–277. https://doi.org/10.1016/j.ab.2004.11.035

    Article  CAS  PubMed  Google Scholar 

  53. Kobayashi, Y., Ito, R., & Saito, K. (2019). Enantiomeric determination of α-lipoic acid in urine by LC/MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 166, 435–439. https://doi.org/10.1016/j.jpba.2019.01.042

    Article  CAS  PubMed  Google Scholar 

  54. Speziale, R., Montesano, C., De Leonibus, M. L., Bonelli, F., Fezzardi, P., Beconi, M. G., Monteagudo, E., Elbaum, D., & Orsatti, L. (2018). Determination of acetyl coenzyme A in human whole blood by ultra-performance liquid chromatography-mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1083, 57–62. https://doi.org/10.1016/j.jchromb.2018.02.039

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Głowacki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Głowacki, R., Piechocka, J., Bald, E., Chwatko, G. (2022). Application of Separation Techniques in Analytics of Biologically Relevant Sulfur Compounds. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-95660-8_11

Download citation

Publish with us

Policies and ethics