Skip to main content
Log in

HovaCAL®—a generator for multi-component humid calibration gases

  • Technical Report
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Process control, breath analysis for medical purpose or the investigation of biological samples are new applications of ion mobility spectrometry or differential mobility spectrometry coupled with rapid gas-chromatographic pre-separation. Especially if pre-concentration steps should be avoided, they require a realistic and flexible multi-compound calibration down to the pptV range including relative humidity values up to 100% for identification of analytes using mobility and retention time as well as for their quantification using the signal intensity as a measure. With HovaCAL® 3834SP-VOC, a novel calibration gas generator is presented that fulfils those requirements. The performance of HovaCAL® was validated for various compounds and mixtures with varying humidity comparing 3 particular equipments. Excellent results have been obtained with standard deviations of the provided concentrations of <8% and of <0.7% for the relative humidity range of 0–100%. Furthermore, standard deviation of the provided concentrations was <3% for varying experimental conditions. The long term stability of the provided concentrations for different instrumental parameters was proofed, standard deviations of <3% have been obtained. HovaCAL® enables for the first time a reliable calibration with complex humid mixtures down to the pptV range and—compared to permeation sources—a flexible and rapid change of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Eiceman GA, Karpas Z (2005) Ion mobility spectrometry. CRC Press, London UK

    Google Scholar 

  2. Borsdorf H, Eiceman GA (2006) Ion mobility spectrometry. Principles and applications. Appl Spectrosc Rev 41:323–375

    Article  CAS  Google Scholar 

  3. Baumbach JI, Eiceman GA (1999) Ion mobility spectrometry. Arriving on-site and moving beyond a low profile. Appl Spectrosc 53(9):338A–355A

    Article  CAS  Google Scholar 

  4. Baumbach JI (2006) Process analysis using ion mobility spectrometry. Anal Bioanal Chem 384:1059–1070

    Article  CAS  Google Scholar 

  5. Vautz W, Baumbach JI (2008) Analysis of bio-processes using ion mobility spectrometry. Engineering in Life Science 8(1):19–25

    Article  CAS  Google Scholar 

  6. Vautz W, Sielemann S, Baumbach JI (2004) Determination of terpenes in humid ambient air using ultraviolet ion mobility spectrometry. Anal Chim Acta 513:393–399

    Article  CAS  Google Scholar 

  7. Vautz W, Baumbach JI, Jung J (2006) Beer fermentation control using ion mobility spectrometry. J Inst Brew 112(2):157–164

    CAS  Google Scholar 

  8. Vautz W, Baumbach JI, Jung J (2004) Continuous monitoring of the fermentation of beer by ion mobility spectrometry. Int J Ion Mobil Spectrom 7(2):3–5

    CAS  Google Scholar 

  9. Vautz W, Mauntz W, Engell S, Baumbach JI (2009) Monitoring of emulsion polymerisation processes using ion mobility spectrometry—a pilot study. Macromol React Eng 3 doi:101002/mren200800043

  10. Vautz W, Zimmermann D, Hartmann M, Baumbach JI, Nolte J, Jung J (2006) Ion mobility spectrometry for food quality and safety. Food Addit Contam 23(11):1064–1073

    Article  CAS  Google Scholar 

  11. Prasad S, Schmidt H, Lampen P, Wang M, Guth R, Rao JV, Smith GB, Eiceman GA (2006) Analysis of bacterial strains with pyrolysis-gas chromatography/differential mobility spectrometry. Analyst 131(11):1216–1225

    Article  CAS  Google Scholar 

  12. Tang XT, Bruce JE, Hill HH (2006) Characterizing Electrospray ionization using atmospheric pressure ion mobility spectrometry. Anal Chem 78(22):7751–7760

    Article  CAS  Google Scholar 

  13. Hill HH, Asbury CH, Wu GR, Matz LM, Ichiye T (2002) Charge location on gas phase peptides. Int J Mass Spectrom 219(1):23–37

    Article  CAS  Google Scholar 

  14. Ruzsanyi V, Baumbach JI, Eiceman GA (2003) Detection of mold markers using ion mobility spectrometry. Int J Ion Mobil Spectrom 6(2):53–57

    CAS  Google Scholar 

  15. Zimmermann D, Hartmann M, Moyer MP, Nolte J, Baumbach JI (2007) Determination of volatile products of human colon cell line metabolism by GC/MS analysis. Metabolomics 3:13–17

    Article  CAS  Google Scholar 

  16. Ruzsanyi V, Baumbach JI (2005) Analysis of human breath using IMS. Int J Ion Mobility Spectrom 8:5–7

    CAS  Google Scholar 

  17. Ruzsanyi V (2005) Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J Chromatogr A 1084:145–151

    Article  CAS  Google Scholar 

  18. Westhoff M (2005) Ion mobility spectrometry: a new method for the detection of lung cancer and airway infection in exhaled air—first results of a pilot study. Chest 128:155S

    Google Scholar 

  19. Baumbach JI, Westhoff M (2006) Ion mobility spectrometry to detect lung cancer and airway infections. Spectrosc Eur 18:22–27

    CAS  Google Scholar 

  20. Westhoff M, Litterst P, Freitag L, Baumbach JI (2007) Ion mobility spectrometry in the diagnosis of Sarcoidosis Results of a feasibility study. J Physiol Pharmacol 58:739–751

    Google Scholar 

  21. Westhoff M (2008) Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of lung cancer patients—results of a pilot study. Thorax 64

  22. Basanta M, Koimtzis T, Thomas CLP (2006) Sampling and analysis of exhaled breath on human subjects with thermal desorption gas chromatography—differential mobility spectrometry. Int J Ion Mobility Spectrom 9:45–49

    CAS  Google Scholar 

  23. Baumbach JI (2009) Ion mobility spectrometry coupled with multi-capillary columns for metabolic profiling of human breath. J Breath Research 3:034001–0340017

    Article  Google Scholar 

  24. Statheropoulos M, Agapiou A, Georgiadou A (2006) Analysis of expired air of fasting male monks at Mount Athos. J Chromatogr B 832:274–279

    Article  CAS  Google Scholar 

  25. Vautz W, Nolte J, Fobbe R, Baumbach JI (2009) Breath analysis—performance and potential of ion mobility spectrometry. J Breath Research 3:036004–036012

    Article  Google Scholar 

  26. Bödeker B, Vautz W, Baumbach JI (2008) Peak comparison in MCC/IMS—data—searching for potential biomarkers in human breath data. Int J Ion Mobility Spectrom 11:89–93

    Article  Google Scholar 

  27. Bödeker B, Vautz W, Baumbach JI (2008) Peak finding and referncing in MCC/IMS-data. Intern J Ion Mobil Spectrom 11:83–87

    Article  Google Scholar 

  28. Bödeker B, Vautz W, Baumbach JI (2008) Visualisation of MCC/IMS—data. Int J Ion Mobil Spectrom 11:77–81

    Article  Google Scholar 

  29. Vautz W, Bödeker B, Bader S, Baumbach JI (2008) Recommendation of a standard format for data sets from GC/IMS with sensor-controlled sampling. Int J Ion Mobil Spectrom 11:71–76

    Article  CAS  Google Scholar 

  30. Baumbach J, Bunkowski A, Lange S, Oberwahrenbrock T, Kleinboelting N, Rahmann S, Baumbach JI (2007) IMS2—an integrated medical software system for early lung cancer detection using ion mobility spectrometry data of human breath. Journal of Integrative Bioinformatics 4(3):75

    Google Scholar 

  31. Bader S, Urfer W, Baumbach JI (2008) Preprocessing of ion mobility spectra by lognormal detailing and wavelet transform. Int J Ion Mobil Spectrom 11:43–50

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Bundesministerium für Bildung und Forschung and the Ministerium für Innovation, Wissenschaft, Forschung und Technologie des Landes Nordrhein-Westfalen is gratefully acknowledged. The work was founded partly by the high-tech strategy funds of the Federal Republic of Germany (Project Metabolit—01SF0716) and by the European Union (Project No. 217967, SGL fur USaR, Call Identifier: FP7-SEC-2007-1). The dedicated experimental work and pre-evaluation of Luzia Seifert, Jessica Zierow, Susanne Krois and Stefanie Güssgen was indispensable for the successful development and validation of the instruments. The patience and creativity of the IAS personal at least enabled the successful development of the calibration gas generator. Over all, we believe that this development is a perfect example for the potential of a cooperation of an instrument producer and an end user. Last but not least, the general support of B&S Analytik, Dortmund, Germany has to be acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Vautz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vautz, W., Schmäh, M. HovaCAL®—a generator for multi-component humid calibration gases. Int. J. Ion Mobil. Spec. 12, 139–147 (2009). https://doi.org/10.1007/s12127-009-0030-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-009-0030-0

Keywords

Navigation