Skip to main content
Log in

Crime Theory Evaluation Using Simulation Models of Residential Burglary

  • Published:
American Journal of Criminal Justice Aims and scope Submit manuscript

Abstract

This paper provides new insights on the study of crime modeling through the development of a hybrid cellular automaton (CA) and Multi-agent System (MAS) simulation model that is able to combine components of multiple criminological theories to forecast the locations of residential burglary targets: journey to crime (JTC), social disorganization (SD) theory, and routine activity (RA) theory. In order to combine individual factors from each theory into a unified model, Analytic Hierarchy Process (AHP) was employed for hierarchical parameter selection. The model is then evaluated using data on offenders obtained from the Dallas Police Department to examine how different crime theories perform in the prediction of residential burglary. Compared to the SD- and RA-weighted models, the JTC-weighted model performed the best when comparisons were made to actual burglary locations. The findings demonstrate that the simulation models of crime provide test beds for research into the explanatory power of various crime theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Increasingly, the use of simulations and agent-based modeling has been of interest to criminologists, as shown for example in a special issue of the Journal of Experimental Criminology (Groff and Mazerolle 2008). As well, computer simulation modeling has been considered in theoretical testing and explanatory development in criminology (Sullivan 2013).

  2. Of course, recent variants of SD, in particular collective efficacy with its focus on social cohesion and willingness to intervene, also focus on informal control structures (see Sampson et al. 1997).

  3. Additional details may be found in Chastain (2011).

References

  • Banai, R. (1993). Fuzziness in geographic information systems: Contributions from the analytic hierarchy process. International Journal of Geographical Information Science, 7, 315–329.

    Article  Google Scholar 

  • Batty, M., & Torrens, P. M. (2001). Modeling complexity: The limits to prediction. Working Paper Series. London: Center for Advanced Spatial Analysis.

    Google Scholar 

  • Batty, M., & Torrens, P. M. (2005). Modelling and prediction in a complex world. Futures, 37, 745–766.

    Article  Google Scholar 

  • Batty, M., & Xie, Y. (1994). From cells to cities. Environment and Planning B, 21, s31–s48.

    Article  Google Scholar 

  • Benenson, I., & Torrens, P. M. (2004). Geosimulation: Automata-based modelling of urban phenomena. Hoboken, NJ: John Wiley & Sons.

    Book  Google Scholar 

  • Berk, R. (2008). How you can tell if the simulations in computational criminology are any good. Journal of Experimental Criminology, 4, 289–308.

    Article  Google Scholar 

  • Berk, R. A., Fovell, R. G., Schoenberg, F., & Weiss, R. E. (2001). The use of statistical tooks for evaluating computer simulations--an editorial essay. Climactic Change, 51, 119–130.

  • Bernasco, W. I. M., & Luykx, F. (2003). Effects of attractiveness, opportunity and accessibility to burglars on residential burglary rates of urban neighborhoods. Criminology, 41, 981–1002.

    Article  Google Scholar 

  • Bernasco, W., & Nieuwbeerta, P. (2005). How do residential burglars select target areas?: a new approach to the analysis of criminal location choice. British Journal of Criminology, 45, 296–315.

    Article  Google Scholar 

  • Bernasco, W., & Block, R. (2009). Where offenders choose to attack: A discrete model of robberies in Chicago. Criminology, 47, 93–130.

  • Birks, D., Townsley, M., & Stewart, A. (2012). Generative explanations of crime: Using simulation to test criminological theory. Criminology, 50, 221–254.

    Article  Google Scholar 

  • Birks, D. J., Townsley, M., & Stewart, A. (2014). Emergent patterns of interpersonal victimization: An agent based approach. Journal of Research in Crime and Delinquency, 51, 119–140.

  • Brantingham, P. J., & Brantingham, P. L. (1981). Notes on the geometry of crime. In P. J. Brantingham, & P. L. Brantingham (Eds.), Environmental criminology (pp. 27–54). Prospect Heights, IL: Waveland Press, Inc.

    Google Scholar 

  • Brantingham, P. L., Gläser, U., Kinney, B., Singh, K., & Vajihollahi, M. (2005). Modeling urban crime patterns: Viewing multi-agent systems as abstract state machines. In D. Beauqiuer, E. Börger, & A. Slissenko (Eds.), 12th international workshop on abstract state machines (pp. 101–117). Paris: France.

    Google Scholar 

  • Brown, D. G., Riolo, R., Robinson, D. T., North, M., & Rand, W. (2005). Spatial process and data models: Toward integration of agent-based models and gis. Journal of Geographical Systems, 7, 25–47.

    Article  ADS  Google Scholar 

  • Bursik, R. J., & Grasmick, H. G. (1993). Neighborhoods and crime. San Francisco: Lexington Books.

    Google Scholar 

  • Canter, D., Hammond, L., Youngs, D., & Juszczak, P. (2013). The efficacy of ideographic models for geographical offender profiling. Journal of Quantitative Criminology, 29, 423–446.

    Article  Google Scholar 

  • Charnpratheep, K., Zhou, Q., & Garner, B. (1997). Preliminary landfill site screening using fuzzy geographical information systems. Waste Management & Research, 15, 197–215.

    Article  CAS  Google Scholar 

  • Chastain, B. (2011). A hybrid CA/MAS model of residential burglary with AHP and GA-based calibration. The University of Texas at Dallas, Richardson, TX.

  • Clare, J., Fernandez, J., & Morgan, F. (2009). Formal evaluation of the impact of barriers and connectors on residential burglars’ macro-level offending location choices. Australian & New Zealand. Journal of Criminology, 42, 139–158.

    Google Scholar 

  • Clarke, K. C., & Gaydos, L. J. (1998). Loose-coupling a cellular automaton model and gis: Long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12, 699–714.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, L. E., & Felson, M. (1979). Social change and crime rate trends: A routine activity approach. American Sociological Review, 44, 588–608.

    Article  Google Scholar 

  • Cornish, D., & Clark, R. V. (1986). The Reasoning Criminal. New York: Springer-Verlag.

  • Costello, A., & Wiles, P. (2001). Gis and the journey to crime: An analysis of patterns in south Yorkshire. In A. Hirschfield, & K. Bowers (Eds.), Mapping and analysing crime data: Lessons from research and practice (pp. 27–60). London: Taylor and Francis.

    Google Scholar 

  • Dai, F. C., Lee, C. F., & Zhang, X. H. (2001). Gis-based geo-environmental evaluation for urban land-use planning: A case study. Engineering Geology, 61, 257–271.

    Article  Google Scholar 

  • Defrances, C. J., & Smith, S. K. (1994). Crime and neighborhoods. Washington, DC: Bureau of Justice Statistics.

    Book  Google Scholar 

  • Dietzel, C., & Clarke, K. (2006). The effect of disaggregating land use categories in cellular automata during model calibration and forecasting. Computers, Environment and Urban Systems, 30, 78–101.

    Article  Google Scholar 

  • Eastman, J. R., Kyem, P. A. K., Toledano, J., & Jin, W. (1993). Gis and decision making. Geneva: UNITAR.

    Google Scholar 

  • Eck, J. E., & Liu, L. (2008). Contrasting simulated and empirical experiments in crime prevention. Journal of Experimental Criminology, 4, 195–213.

    Article  Google Scholar 

  • Federal Bureau of Investigation. (2012). Crime in the United States, 2012 [online]. FBI. Available from: http://www.fbi.gov/ucr/cius2006/index.html

  • Gottheil, E., & Gabor, T. (1984). Offender characteristics and spatial mobility. Canadian Journal of Criminology, 26, 267–281.

    Google Scholar 

  • Groff, E. (2007). Simulation for theory testing and experimentation: An example using routine activity theory and street robbery. Journal of Quantitative Criminology, 23, 75–103.

    Article  Google Scholar 

  • Groff, E., & Mazerolle, L. (2008). Simulated experiments and their potential role in criminology and criminal justice. Journal of Experimental Criminology, 4, 187–193.

    Article  Google Scholar 

  • Gunderson, L., & Brown, D. (2000). Using a multi-agent model to predict both physical and cyber criminal activity. In D. Brown (Ed.), Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (pp. 2338–2343).

    Google Scholar 

  • Hayslett-Mccall, K. L., Qiu, F., Curtin, K. M., Chastain, B., Schubert, J., & Carver, V. (2008). The simulation of the journey to residential burglary. In L. Liu, & J. Eck (Eds.), Artificial crime analysis systems: Using computer simulation and geographic information systems (pp. 281–299). Hershey, PA: Idea Group.

    Chapter  Google Scholar 

  • Hunter, A. J. (1985). Private, parochial, and public social orders: The problem of crime and incivility in urban communities. In G. D. Suttles, & M. N. Zald (Eds.), The challenge of social control: Citizenship and institution building in modern society (pp. 230–242). Norwood, NJ: Ablex Publishing.

    Google Scholar 

  • Johnson, S. D., & Bowers, K. J. (2007). Burglary prediction: Theory, flow and friction. In G. Farrell, K. J. Bowers, S. D. Johnson, & M. Townsley (Eds.), Innovation for crime prevention: Essays in honor of Ken Pease (pp. 203–224). CRC Press.

  • Johnson, S., & Bowers, K. (2010). Permeability and burglary risk: Are cul-de-sacs safer? Journal of Quantitative Criminology, 26, 89–111.

    Article  Google Scholar 

  • Li, X., & Yeh, A. G.-O. (2001). Calibration of cellular automata by using neural networks for the simulation of complex urban systems. Environment & Planning A, 33, 1445–1462.

    Article  Google Scholar 

  • Liang, J. (2001). Simulating crimes and crime patterns using cellular automata and gis. University of Cincinnati.

  • Liu, X., & Andersson, C. (2004). Assessing the impact of temporal dynamics on land-use change modeling. Computers, Environment and Urban Systems, 28, 107–124.

    Article  Google Scholar 

  • Liu, L., Wang, X., Eck, J., & Liang, J. (2005). Simulating crime events and crime patterns in a ra/ca model. In F. Wang (Ed.), Geographic information systems and crime analysis (pp. 197–213). Hershey, PA: Idea Group Pub.

    Chapter  Google Scholar 

  • Malczewski, J. (2000). On the use of weighted linear combination method in gis: Common and best practice approaches. Transactions in GIS, 4, 5–22.

    Article  Google Scholar 

  • Malczewski, J. (2002). Fuzzy screening for land suitability analysis. Geographical and Environmental Modelling, 6, 27–39.

    Article  Google Scholar 

  • Malleson, N., Heppenstall, A., & See, L. (2010). Crime reduction through simulation: An agent-based model of burglary. Computers, Environment and Urban Systems, 34, 236–250.

    Article  Google Scholar 

  • Marinoni, O. (2004). Implementation of the analytical hierarchy process with vba in arcgis. Computers & Geosciences, 30, 637–646.

    Article  ADS  Google Scholar 

  • Piquero, A., & Rengert, G. F. (1999). Studying deterrence with active residential Burglars. Justice Quarterly, 16, 451–471.

    Article  Google Scholar 

  • Piquero, A. R., Paternoster, R., Pogarsky, G., & Loughran, T. (2011). Elaborating the individual difference component in deterrence theory. Annual Review of Law and Social Science, 7, 335–360.

    Article  Google Scholar 

  • Pyle, G. F. (1976). Spatial and temporal aspects of crime in Cleveland, Ohio. American Behavioral Scientist, 20, 175–198.

    Article  Google Scholar 

  • Rand, A. (1986). Mobility triangles. In R. M. Figlio, S. Hakim, & G. F. Rengert (Eds.), Metropolitan crime patterns (pp. 117–126). Monsey, NY: Criminal Justice Press.

    Google Scholar 

  • Ratcliffe, J. H., & Mccullagh, M. J. (2001). Chasing ghosts? Police perception of high crime areas. British Journal of Criminology, 41, 330–341.

    Article  Google Scholar 

  • Rengert, G. F. (1981). Burglary in Philadelphia: A critique of opportunity structure model. In P. J. Brantingham, & P. L. Brantingham (Eds.), Environmental criminology (pp. 167–188). Beverly Hills, CA: Sage Publications.

    Google Scholar 

  • Rengert, G., & Wasilchick, J. (1985). Suburban burglary: A time and a place for everything. Springfield, IL: Charles Thomas Publishers.

    Google Scholar 

  • Rengert, G. F., Piquero, A. R., & Jones, P. R. (1999). Distance decay reexamined. Criminology, 37, 427–445.

    Article  Google Scholar 

  • Reppetto, T. A. (1974). Residential crime. Cambridge, MA: Ballinger.

    Google Scholar 

  • Rhodes, W. M., & Conley, C. (1981). Crime and mobility: An empirical study. In P. J. Brantingham, & P. L. Brantingham (Eds.), Environmental criminology (pp. 167–188). Beverly Hills, CA: Sage Publications.

    Google Scholar 

  • Rinner, C., & Taranu, J. P. (2006). Map-based exploratory evaluation of non-medical determinants of population health. Transactions in GIS, 10, 633–649.

    Article  Google Scholar 

  • Rossmo, D. K. (1993). Target patterns of serial murderers: A methodological model. American Journal of Criminal Justice, 17, 1–21.

    Article  Google Scholar 

  • Rossmo, D. K. (1995). Overview: Multivariate spatial profiles as a tool in crime investigation. In C. R. Block, M. Dabdoub, & S. Fregly (Eds.), Crime analysis through computer mapping (pp. 65–97). Washington, DC: Police Executive Research Forum.

    Google Scholar 

  • Saaty, T. J. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 231–281.

    Article  MathSciNet  MATH  Google Scholar 

  • Sampson, R. J. (1987). Does an intact family reduce burglary risk for its neighbors? Sociology and Social Research, 71, 204–207.

    Google Scholar 

  • Sampson, R. J., & Groves, W. B. (1989). Community structure and crime: Testing social-disorganization theory. American Journal of Sociology, 94, 774–802.

    Article  Google Scholar 

  • Sampson, R. J., & Wilson, W. J. (1995). Race, crime and urban inequality. In J. Hagan, & R. D. Peterson (Eds.), Crime and inequality (pp. 37–54). Stanford University Press.

  • Sampson, R.J., Raudenbush, S. W., & Earls, F. (1997). Neighborhoods and violent crime: A multilevel study of collective efficacy. Science, 277, 918–924.

  • Shaw, C. R., & Mckay, H. D. (1942). Juvenile delinquency and urban areas. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modelling change and event occurrence. New York, NY: Oxford University Press.

    Book  Google Scholar 

  • Sloot, P. M. A., Kaandorp, J. A., Hoekstra, A. G., & Overeinder, B. J. (2002). Distributed simulation with cellular automata: Architecture and applicationsed. In J. Pavelka, G. Tel, & M. Bartosek (Eds.), SOFSEM’99: Theory and practice of informatics, volume 1725 of the series lecture notes in computer science (pp. 203–249). New York: Springer-Verlag.

    Google Scholar 

  • Sullivan, C. (2013). Computer simulation experiments and the development of criminological theory. In B. C. Welsh, A. Braga, & G. J. N. Bruinsm (Eds.), Experimental criminology: Prospects for advancing science and public policy (pp. 65–89). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Takeyama, M., & Couclelis, H. (1997). Map dynamics: Integrating cellular automata and gis through geo-algebra. International Journal of Geographical Information Science, 11, 73–91.

    Article  Google Scholar 

  • Tomlin, D. (1990). Geographic information systems and cartographic modeling. New York: Prentice Hall.

    Google Scholar 

  • Townsley, M., & Birks, D. (2008). Building better crime simulations: Systematic replication and the introduction of incremental complexity. Journal of Experimental Criminology, 4, 309–333.

    Article  Google Scholar 

  • Townsley, M., & Sidebottom, A. (2010). All offenders are equal, but some are more equal than others: Variation in journeys to crime between offenders. Criminology, 48, 897–917.

  • Turner, S. (1969). Delinquency and distance. In J. T. Sellin, & M. E. Wolfgang (Eds.), Delinquency: Selected studies (pp. 11–26). New York: Wiley.

    Google Scholar 

  • White, C. R. (1932). The relation of felonies to environmental factors in Indianapolis. Social Forces, 10, 498–509.

    Article  Google Scholar 

  • Wilson, W. J. (1987). The truly disadvantaged: The inner city, the underclass, and public policy. Chicago: University of Chicago Press.

    Google Scholar 

  • Wolfram, S. (1986). Theory and applications of cellular automata. Singapore: World Scientific.

    MATH  Google Scholar 

  • Wright, R., & Decker, S. H. (1994). Burglars on the job: Streetlife and residential break-ins. Boston: Northeastern University Press.

    Google Scholar 

  • Wu, F. (2002). Calibration of stochastic cellular automata: The application to rural-urban land conversions. International Journal of Geographical Information Science, 16, 795–818.

    Article  ADS  Google Scholar 

  • Yan, F. X., Xia, J., Shen, G. Q., & Kang, X. S. (2011). A Crime Decision-making Model Based on AHP. Applied Mechanics and Materials, 50-51, 885–889.

  • Zhang, Y., Yang, Z., & Yu, X. (2006). Measurement and evaluation of interactions in complex urban ecosystem. Ecological Modelling, 196, 77–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chastain, B., Qiu, F. & Piquero, A.R. Crime Theory Evaluation Using Simulation Models of Residential Burglary. Am J Crim Just 41, 814–833 (2016). https://doi.org/10.1007/s12103-016-9336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12103-016-9336-8

Keywords

Navigation