Skip to main content

Advertisement

Log in

Current approaches in glioblastoma multiforme immunotherapy

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma multiform (GBM) is the most prevalent CNS (central nervous system) tumor in adults, with an average survival length shorter than 2 years and rare metastasis to organs other than CNS. Despite extensive attempts at surgical resecting, the inherently permeable nature of this disease has rendered relapse nearly unavoidable. Thus, immunotherapy is a feasible alternative, as stimulated immune cells can enter into the remote and inaccessible tumor cells. Immunotherapy has revolutionized patient upshots in various malignancies and might introduce different effective ways for GBM patients. Currently, researchers are exploring various immunotherapeutic strategies in patients with GBM to target both the innate and acquired immune responses. These approaches include reprogrammed tumor-associated macrophages, the use of specific antibodies to inhibit tumor progression and metastasis, modifying tumor-associated macrophages with antibodies, vaccines that utilize tumor-specific dendritic cells to activate anti-tumor T cells, immune checkpoint inhibitors, and enhanced T cells that function against tumor cells. Despite these findings, there is still room for improving the response faults of the many currently tested immunotherapies. This study aims to review the currently used immunotherapy approaches with their molecular mechanisms and clinical application in GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Chakrabarti I, Cockburn M, Cozen W, Wang Y, Preston-Martin S. A population-based description of glioblastoma multiforme in Los Angeles County, 1974–1999. Cancer Interdiscip Int J Am Cancer Soc. 2005;104:2798–806.

    Google Scholar 

  2. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 2018;20:iv1–86.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McFaline-Figueroa JR, Lee EQ. Brain tumors. Am J Med. 2018;131:874–82.

    Article  PubMed  Google Scholar 

  4. Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol. 2010;120:707–18.

    Article  PubMed  Google Scholar 

  5. Appin CL, Gao J, Chisolm C, Torian M, Alexis D, Vincentelli C, et al. Glioblastoma with oligodendroglioma component (GBM-O): molecular genetic and clinical characteristics. Brain Pathol. 2013;23:454–61.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tabnak P, Mafakheri A, Emsailpoor ZH, Kazemi T, Shekari N. Regulatory interplay between microRNAs and WNT pathway in glioma. Biomed Pharmacother. 2021;143: 112187.

    Article  CAS  PubMed  Google Scholar 

  7. Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  8. Stupp R, Hegi ME, Mason WP, Van Den Bent MJ, Taphoorn MJB, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    Article  CAS  PubMed  Google Scholar 

  9. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu F, a Dzaye OD, Hahn A, Yu Y, Scavetta RJ, Dittmar G, et al. Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages Toll-like receptor 2 signaling. Neuro Oncol. 2015;17:200–10.

    Article  CAS  PubMed  Google Scholar 

  11. Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia. 2011;59:1169–80.

    Article  PubMed  Google Scholar 

  12. Gabrusiewicz K, Rodriguez B, Wei J, Hashimoto Y, Healy LM, Maiti SN, et al. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight. 2016;1: e85841.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-γ. Annu Rev Immunol. 1997;15:749–95.

    Article  CAS  PubMed  Google Scholar 

  14. Kennedy BC, Showers CR, Anderson DE, Anderson L, Canoll P, Bruce JN, et al. Tumor-associated macrophages in glioma: friend or foe? J Oncol. 2013. https://doi.org/10.1155/2013/486912.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Badie B, Schartner JM. Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery. 2000;46:957–62.

    CAS  PubMed  Google Scholar 

  16. Nasser MW, Elbaz M, Ahirwar DK, Ganju RK. Conditioning solid tumor microenvironment through inflammatory chemokines and S100 family proteins. Cancer Lett. 2015;365:11–22.

    Article  CAS  PubMed  Google Scholar 

  17. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19:20–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wurdinger T, Deumelandt K, van der Vliet HJ, Wesseling P, de Gruijl TD. Mechanisms of intimate and long-distance cross-talk between glioma and myeloid cells: how to break a vicious cycle. Biochim Biophys Acta (BBA) Rev Cancer. 2014;1846:560–75.

    Article  CAS  Google Scholar 

  19. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zheng X, Turkowski K, Mora J, Brüne B, Seeger W, Weigert A, et al. Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget. 2017;8:48436.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang L, Alizadeh D, Van Handel M, Kortylewski M, Yu H, Badie B. Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia. 2009;57:1458–67.

    Article  PubMed  Google Scholar 

  22. Finn OJ. A believer’s overview of cancer immunosurveillance and immunotherapy. J Immunol. 2018;200:385–91.

    Article  CAS  PubMed  Google Scholar 

  23. Zhai L, Ladomersky E, Lauing KL, Wu M, Genet M, Gritsina G, et al. Infiltrating T cells increase IDO1 expression in glioblastoma and contribute to decreased patient survival. Clin Cancer Res. 2017;23:6650–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adeegbe DO, Nishikawa H. Natural and induced T regulatory cells in cancer. Front Immunol. 2013;4:190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang G, Zhong K, Wang Z, Zhang Z, Tang X, Tong A, et al. Tumor-associated microglia and macrophages in glioblastoma: From basic insights to therapeutic opportunities. Front Immunol. 2022;13: 964898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen H, Li M, Guo Y, Zhong Y, He Z, Xu Y, et al. Immune response in glioma’s microenvironment. Innov Surg Sci. 2020;5:115–25. https://doi.org/10.1515/iss-2019-0001.

    Article  Google Scholar 

  27. Ye Z, He H, Wang H, Li W, Luo L, Huang Z, et al. Glioma-derived ADAM10 induces regulatory B cells to suppress CD8+ T cells. PLoS ONE. 2014;9: e105350.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Han S, Feng S, Ren M, Ma E, Wang X, Xu L, et al. Glioma cell-derived placental growth factor induces regulatory B cells. Int J Biochem Cell Biol. 2014;57:63–8.

    Article  CAS  PubMed  Google Scholar 

  29. Wang W, Yuan X, Chen H, Xie G, Ma Y, Zheng Y, et al. CD19+ CD24hiCD38hiBregs involved in downregulate helper T cells and upregulate regulatory T cells in gastric cancer. Oncotarget. 2015;6:33486.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bagheri Y, et al. Current progress in cancer immunotherapy based on natural killer cells. Cell Biol Int. 2021;45(1):2–17.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang X, Rao A, Sette P, Deibert C, Pomerantz A, Kim WJ, et al. IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression. Neuro Oncol. 2016;18:1402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu A, Wiesner S, Xiao J, Ericson K, Chen W, Hall WA, et al. Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy. J Neurooncol. 2007;83:121–31.

    Article  CAS  PubMed  Google Scholar 

  33. Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 2016;76:5671–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schneider M, Ströbele S, Nonnenmacher L, Siegelin MD, Tepper M, Stroh S, et al. A paired comparison between glioblastoma “stem cells” and differentiated cells. Int J Cancer. 2016;138:1709–18.

    Article  CAS  PubMed  Google Scholar 

  35. Ji B, Chen Q, Liu B, Wu L, Tian D, Guo Z, et al. Glioma stem cell-targeted dendritic cells as a tumor vaccine against malignant glioma. Yonsei Med J. 2013;54:92–100.

    Article  CAS  PubMed  Google Scholar 

  36. Hatiboglu MA, Wei J, Wu ASG, Heimberger AB. Immune therapeutic targeting of glioma cancer stem cells. Target Oncol. 2010;5:217–27.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, et al. Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol. 2018;20:184–91.

    Article  CAS  PubMed  Google Scholar 

  38. Harder BG, Blomquist MR, Wang J, Kim AJ, Woodworth GF, Winkles JA, et al. Developments in blood–brain barrier penetrance and drug repurposing for improved treatment of glioblastoma. Front Oncol. 2018;8:462.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Daubon T, Hemadou A, Romero Garmendia I, Saleh M. Glioblastoma immune landscape and the potential of new immunotherapies. Front Immunol. 2020;11: 585616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 2005;333:328–35.

    Article  CAS  PubMed  Google Scholar 

  41. Bergers G. Bone marrow-derived cells in GBM neovascularization. In: CNS cancer models, markers, prognostic factors, targets, and therapeutic approaches. New York: Humana Press; 2009. p. 749–73.

    Chapter  Google Scholar 

  42. Vredenburgh JJ, Desjardins A, Herndon JE, Dowell JM, Reardon DA, Quinn JA, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res. 2007;13:1253–9.

    Article  CAS  PubMed  Google Scholar 

  43. Reardon DA, Desjardins A, Vredenburgh JJ, Gururangan S, Sampson JH, Sathornsumetee S, et al. Metronomic chemotherapy with daily, oral etoposide plus bevacizumab for recurrent malignant glioma: a phase II study. Br J Cancer. 2009;101:1986–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang S-B, Gao K-D, Jiang T, Cheng S-J, Li W-B. Bevacizumab combined with chemotherapy for glioblastoma: a meta-analysis of randomized controlled trials. Oncotarget. 2017;8:57337.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hatanpaa KJ, Burma S, Zhao D, Habib AA. Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. Neoplasia. 2010;12:675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Crombet Ramos T, Figueredo J, Catala M, Sandra G, Selva JC, Cruz TM, et al. Treatment of high-grade glioma patients with the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3: report from a phase I/II trial. Cancer Biol Ther. 2006;5:375–9.

    Article  Google Scholar 

  47. Hong J, Peng Y, Liao Y, Jiang W, Wei R, Huo L, et al. Nimotuzumab prolongs survival in patients with malignant gliomas: a phase I/II clinical study of concomitant radiochemotherapy with or without nimotuzumab. Exp Ther Med. 2012;4:151–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Uhrbom L, Hesselager G, Nistér M, Westermark B. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res. 1998;58:5275–9.

    CAS  PubMed  Google Scholar 

  49. Chiorean EG, Sweeney C, Youssoufian H, Qin A, Dontabhaktuni A, Loizos N, et al. A phase I study of olaratumab, an anti-platelet-derived growth factor receptor alpha (PDGFRα) monoclonal antibody, in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2014;73:595–604.

    Article  CAS  PubMed  Google Scholar 

  50. Chekhonin I, Gurina O. Trends in malignant glioma monoclonal antibody therapy. Curr Cancer Ther Rev. 2015;11:102–18.

    Article  CAS  Google Scholar 

  51. Jun HT, Sun J, Rex K, Radinsky R, Kendall R, Coxon A, et al. AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clin Cancer Res. 2007;13:6735–42.

    Article  CAS  PubMed  Google Scholar 

  52. Gordon MS, Sweeney CJ, Mendelson DS, Eckhardt SG, Anderson A, Beaupre DM, et al. Safety, pharmacokinetics, and pharmacodynamics of AMG 102, a fully human hepatocyte growth factor–neutralizing monoclonal antibody, in a first-in-human study of patients with advanced solid tumors. Clin Cancer Res. 2010;16:699–710.

    Article  CAS  PubMed  Google Scholar 

  53. Wen PY, Schiff D, Cloughesy TF, Raizer JJ, Laterra J, Smitt M, et al. A phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro Oncol. 2011;13:437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu S, Tang L, Li X, Fan F, Liu Z. Immunotherapy for glioma: current management and future application. Cancer Lett. 2020;476:1–12.

    Article  CAS  PubMed  Google Scholar 

  55. Mirick GR, Bradt BM, Denardo SJ, Denardo GL. A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words. Q J Nucl Med Mol Imaging. 2004;48:251.

    CAS  PubMed  Google Scholar 

  56. Vu T, Claret FX. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front Oncol. 2012;2:62.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Longo DL. Tumor heterogeneity and personalized medicine. N Engl J Med. 2012;366:956–7.

    Article  CAS  PubMed  Google Scholar 

  58. Modjtahedi H, Ali S, Essapen S. Therapeutic application of monoclonal antibodies in cancer: advances and challenges. Br Med Bull. 2012;104:41–59.

    Article  CAS  PubMed  Google Scholar 

  59. Conlon KC, Miljkovic MD, Waldmann TA. Cytokines in the treatment of cancer. J Interf Cytokine Res. 2019;39:6–21.

    Article  CAS  Google Scholar 

  60. Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer. 2021;21:481–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang M, Zhang YY, Chen Y, Wang J, Wang Q, Lu H. TGF-β signaling and resistance to cancer therapy. Front Cell Dev Biol. 2021;9: 786728.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Han J, Alvarez-Breckenridge CA, Wang Q-E, Yu J. TGF-β signaling and its targeting for glioma treatment. Am J Cancer Res. 2015;5:945.

    PubMed  PubMed Central  Google Scholar 

  63. Bogdahn U, Hau P, Stockhammer G, Venkataramana NK, Mahapatra AK, Suri AA, et al. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol. 2010;13:132–42.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jaschinski F, Rothhammer T, Jachimczak P, Seitz C, Schneider A, Schlingensiepen K-H. The antisense oligonucleotide trabedersen (AP 12009) for the targeted inhibition of TGF-β2. Curr Pharm Biotechnol. 2011;12:2203–13.

    Article  CAS  PubMed  Google Scholar 

  65. Brandes AA, Carpentier AF, Kesari S, Sepulveda-Sanchez JM, Wheeler HR, Chinot O, et al. A phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol. 2016;18:1146–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hao C, Parney IF, Roa WH, Turner J, Petruk KC, Ramsay DA. Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol. 2002;103:171–8.

    Article  CAS  PubMed  Google Scholar 

  67. Blancher A, Roubinet F, Grancher AS, Tremoulet M, Bonate A, Delisle MB, et al. Local immunotherapy of recurrent glioblastoma multiforme by intracerebral perfusion of interleukin-2 and LAK cells. Eur Cytokine Netw. 1993;4:331–41.

    CAS  PubMed  Google Scholar 

  68. Colombo F, Barzon L, Franchin E, Pacenti M, Pinna V, Danieli D, et al. Combined HSV-TK/IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results. Cancer Gene Ther. 2005;12:835–48.

    Article  CAS  PubMed  Google Scholar 

  69. Rand RW, Kreitman RJ, Patronas N, Varricchio F, Pastan I, Puri RK. Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res. 2000;6:2157–65.

    CAS  PubMed  Google Scholar 

  70. Butowski N, Colman H, De Groot JF, Omuro AM, Nayak L, Wen PY, et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol. 2015;18:557–64.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Atallah-Yunes SA, Robertson MJ. Cytokine based immunotherapy for cancer and lymphoma: biology, challenges and future perspectives. Front Immunol. 2022;13: 872010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lin H, Wang K, Xiong Y, Zhou L, Yang Y, Chen S, et al. Identification of tumor antigens and immune subtypes of glioblastoma for mRNA vaccine development. Front Immunol. 2022;13: 773264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hosseinalizadeh H, Rahmati M, Ebrahimi A, O’Connor RS. Current status and challenges of vaccination therapy for glioblastoma. Mol Cancer Ther. 2023;22:435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK. Peptide vaccine: progress and challenges. Vaccines. 2014;2:515–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. An Z, Aksoy O, Zheng T, Fan Q-W, Weiss WA. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene. 2018;37:1561–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Heimberger AB, Crotty LE, Archer GE, Hess KR, Wikstrand CJ, Friedman AH, et al. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin Cancer Res. 2003;9:4247–54.

    CAS  PubMed  Google Scholar 

  77. Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Herndon JE, Lally-Goss D, et al. An epidermal growth factor receptor variant III–targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther. 2009;8:2773–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28:4722.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sampson JH, Aldape KD, Archer GE, Coan A, Desjardins A, Friedman AH, et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol. 2011;13:324–33.

    Article  CAS  PubMed  Google Scholar 

  80. Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–85.

    Article  CAS  PubMed  Google Scholar 

  81. Rampling R, Peoples S, Mulholland PJ, James A, Al-Salihi O, Twelves CJ, et al. A cancer research UK first time in human phase I trial of IMA950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res. 2016;22:4776–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Migliorini D, Dutoit V, Allard M, Grandjean Hallez N, Marinari E, Widmer V, et al. Phase I/II trial testing safety and immunogenicity of the multipeptide IMA950/poly-ICLC vaccine in newly diagnosed adult malignant astrocytoma patients. Neuro Oncol. 2019;21:923–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zou P, Xu H, Chen P, Yan Q, Zhao L, Zhao P, et al. IDH1/IDH2 mutations define the prognosis and molecular profiles of patients with gliomas: a meta-analysis. PLoS ONE. 2013;8: e68782.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Platten M, Bunse L, Wick A, Bunse T, Le Cornet L, Harting I, et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature. 2021;592:463–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988;22:631–77.

    Article  CAS  PubMed  Google Scholar 

  87. Ampie L, Choy W, Lamano JB, Fakurnejad S, Bloch O, Parsa AT. Heat shock protein vaccines against glioblastoma: from bench to bedside. J Neurooncol. 2015;123:441–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bloch O, Crane CA, Fuks Y, Kaur R, Aghi MK, Berger MS, et al. Heat-shock protein peptide complex–96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro Oncol. 2014;16:274–9.

    Article  CAS  PubMed  Google Scholar 

  89. Crane CA, Han SJ, Ahn B, Oehlke J, Kivett V, Fedoroff A, et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin Cancer Res. 2013;19:205–14.

    Article  CAS  PubMed  Google Scholar 

  90. Ji N, Zhang Y, Liu Y, Xie J, Wang Y, Hao S, et al. Heat shock protein peptide complex-96 vaccination for newly diagnosed glioblastoma: a phase I, single-arm trial. JCI Insight. 2018;3: e99145.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hdeib A, Sloan AE. Dendritic cell immunotherapy for solid tumors: evaluation of the DCVax® platform in the treatment of glioblastoma multiforme. CNS Oncol. 2015;4:63–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16:1–9.

    Google Scholar 

  93. Polyzoidis S, Ashkan K. DCVax®-L—developed by northwest biotherapeutics. Hum Vaccin Immunother. 2014;10:3139–45.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H, Nuno MA, et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother. 2013;62:125–35.

    Article  CAS  PubMed  Google Scholar 

  95. Wen PY, Reardon DA, Armstrong TS, Phuphanich S, Aiken RD, Landolfi JC, et al. A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clin Cancer Res. 2019;25:5799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mitchell DA, Batich KA, Gunn MD, Huang M-N, Sanchez-Perez L, Nair SK, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature. 2015;519:366–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Batich KA, Mitchell DA, Healy P, Herndon JE, Sampson JH. Once, twice, three times a finding: reproducibility of dendritic cell vaccine trials targeting cytomegalovirus in glioblastoma. Clin Cancer Res. 2020;26:5297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rong L, Li N, Zhang Z. Emerging therapies for glioblastoma: current state and future directions. J Exp Clin Cancer Res. 2022;41:1–18.

    Article  Google Scholar 

  99. Aghi MK, Chiocca EA. Phase Ib trial of oncolytic herpes virus G207 shows safety of multiple injections and documents viral replication. Mol Ther. 2009;17:8–9.

    Article  CAS  PubMed  Google Scholar 

  100. Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol. 2018;36:1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ochiai H, Campbell SA, Archer GE, Chewning TA, Dragunsky E, Ivanov A, et al. Targeted therapy for glioblastoma multiforme neoplastic meningitis with intrathecal delivery of an oncolytic recombinant poliovirus. Clin Cancer Res Off J Am Assoc Cancer Res. 2006;12:1349–54.

    Article  CAS  Google Scholar 

  102. Desjardins A, Sampson JH, Peters KB, Vlahovic G, Randazzo D, Threatt S, et al. Oncolytic polio/rhinovirus recombinant (PVSRIPO) against recurrent glioblastoma (GBM): Optimal dose determination. J Clin Oncol. 2015;33(15):2068–68. https://doi.org/10.1200/jco.2015.33.15_suppl.2068

  103. Perez OD, Logg CR, Hiraoka K, Diago O, Burnett R, Inagaki A, et al. Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Mol Ther. 2012;20:1689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cloughesy TF, Landolfi J, Hogan DJ, Bloomfield S, Carter B, Chen CC, et al. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci Transl Med. 2016;8:341ra75.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chen L, Zhou C, Chen Q, Shang J, Liu Z, Guo Y, et al. Oncolytic Zika virus promotes intratumoral T cell infiltration and improves immunotherapy efficacy in glioblastoma. Mol Ther. 2022;24:522–34.

    CAS  Google Scholar 

  106. Zhu Z, Mesci P, Bernatchez JA, Gimple RC, Wang X, Schafer ST, et al. Zika virus targets glioblastoma stem cells through a SOX2-integrin αvβ5 axis. Cell Stem Cell. 2020;26:187–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nair S, Mazzoccoli L, Jash A, Govero J, Bais SS, Hu T, et al. Zika virus oncolytic activity requires CD8+ T cells and is boosted by immune checkpoint blockade. JCI Insight. 2021;6: e144619.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res. 2014;2:295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ma R, Li Z, Chiocca EA, Caligiuri MA, Yu J. The emerging field of oncolytic virus-based cancer immunotherapy. Trends Cancer. 2023;9:122–39.

    Article  CAS  PubMed  Google Scholar 

  110. Li L, Liu S, Han D, Tang B, Ma J. Delivery and biosafety of oncolytic virotherapy. Front Oncol. 2020;10:475.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Suryawanshi YR, Schulze AJ. Oncolytic viruses for malignant glioma: on the verge of success? Viruses. 2021;13:1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res. 2019;38:1–24.

    Article  Google Scholar 

  113. Aquilanti E, Kageler L, Wen PY, Meyerson M. Telomerase as a therapeutic target in glioblastoma. Neuro Oncol. 2021;23:2004–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tsuboi A, Hashimoto N, Fujiki F, Morimoto S, Kagawa N, Nakajima H, et al. A phase I clinical study of a cocktail vaccine of Wilms’ tumor 1 (WT1) HLA class I and II peptides for recurrent malignant glioma. Cancer Immunol Immunother. 2019;68:331–40.

    Article  CAS  PubMed  Google Scholar 

  115. Mohamed Khosroshahi L, et al. Immune checkpoints and reproductive immunology: pioneers in the future therapy of infertility related disorders? Int Immunopharmacol. 2021;99: 107935.

    Article  CAS  PubMed  Google Scholar 

  116. Pearson JRD, Cuzzubbo S, McArthur S, Durrant LG, Adhikaree J, Tinsley CJ, et al. Immune escape in glioblastoma multiforme and the adaptation of immunotherapies for treatment. Front Immunol. 2020;11: 582106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ghouzlani A, Kandoussi S, Tall M, Reddy KP, Rafii S, Badou A. Immune checkpoint inhibitors in human glioma microenvironment. Front Immunol. 2021;12: 679425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Reardon DA, Kim TM, Frenel J, Simonelli M, Lopez J, Subramaniam DS, et al. Treatment with pembrolizumab in programmed death ligand 1–positive recurrent glioblastoma: results from the multicohort phase 1 KEYNOTE-028 trial. Cancer. 2021;127:1620–9.

    Article  CAS  PubMed  Google Scholar 

  119. Reardon DA, Omuro A, Brandes AA, Rieger J, Wick A, Sepulveda J, et al. OS10 3 randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro Oncol. 2017;19:iii21–iii21.

    Article  PubMed Central  Google Scholar 

  120. Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, López-Janeiro A, Porciuncula A, Idoate MA, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. 2019;25:470–6.

    Article  CAS  PubMed  Google Scholar 

  121. Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E, et al. Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas. Clin Cancer Res. 2017;23:124–36.

    Article  CAS  PubMed  Google Scholar 

  122. Harris-Bookman S, Mathios D, Martin AM, Xia Y, Kim E, Xu H, et al. Expression of LAG-3 and efficacy of combination treatment with anti-LAG-3 and anti-PD-1 monoclonal antibodies in glioblastoma. Int J Cancer. 2018;143:3201–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, Tobias A, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res. 2014;20:5290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lakshmanachetty S, Cruz-Cruz J, Hoffmeyer E, Cole AP, Mitra SS. New insights into the multifaceted role of myeloid-derived suppressor cells (MDSCs) in high-grade gliomas: from metabolic reprograming, immunosuppression, and therapeutic resistance to current strategies for targeting MDSCs. Cells. 2021;10:893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mirandola L, Wade R, Verma R, Pena C, Hosiriluck N, Figueroa JA, et al. Sex-driven differences in immunological responses: challenges and opportunities for the immunotherapies of the third millennium. Int Rev Immunol. 2015;34:134–42.

    Article  CAS  PubMed  Google Scholar 

  126. Bhutiani N, Wargo JA. Gut microbes as biomarkers of ICI response—sharpening the focus. Nat Rev Clin Oncol. 2022;19:495–6.

    Article  PubMed  Google Scholar 

  127. Routy B, Gopalakrishnan V, Daillère R, Zitvogel L, Wargo JA, Kroemer G. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018;15:382–96.

    Article  CAS  PubMed  Google Scholar 

  128. Bauer KC, Greten TF. A gut response: modulating chemotherapy efficacy with microbial metabolites. Immunity. 2023;56:750–2.

    Article  CAS  PubMed  Google Scholar 

  129. Yi M, Qin S, Chu Q, Wu K. The role of gut microbiota in immune checkpoint inhibitor therapy. Hepatobiliary Surg Nutr. 2018;7:481.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Titov A, Zmievskaya E, Ganeeva I, Valiullina A, Petukhov A, Rakhmatullina A, et al. Adoptive immunotherapy beyond CAR T-cells. Cancers. 2021;13:743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dillman RO, Duma CM, Schiltz PM, DePriest C, Ellis RA, Okamoto K, et al. Intracavitary placement of autologous lymphokine-activated killer (LAK) cells after resection of recurrent glioblastoma. J Immunother. 2004;27:398–404.

    Article  PubMed  Google Scholar 

  132. Hayes RL, Koslow M, Hiesiger EM, Hymes KB, Moore EJ, Pierz DM, et al. Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer. 1995;76:840–52.

    Article  CAS  PubMed  Google Scholar 

  133. Boiardi A, Silvani A, Ruffini PA, Rivoltini L, Parmiani G, Broggi G, et al. Loco-regional immunotherapy with recombinant interleukin-2 and adherent lymphokine-activated killer cells (A-LAK) in recurrent glioblastoma patients. Cancer Immunol Immunother. 1994;39:193–7.

    Article  CAS  PubMed  Google Scholar 

  134. Dillman RO, Duma CM, Ellis RA, Cornforth AN, Schiltz PM, Sharp SL, et al. Intralesional lymphokine-activated killer cells as adjuvant therapy for primary glioblastoma. J Immunother. 2009;32:914–9.

    Article  PubMed  Google Scholar 

  135. Yu Y. The function of NK cells in tumor metastasis and NK cell-based immunotherapy. Cancers. 2023;15:2323.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Hosseini R, Sarvnaz H, Arabpour M, Ramshe SM, Asef-Kabiri L, Yousefi H, et al. Cancer exosomes and natural killer cells dysfunction: biological roles, clinical significance and implications for immunotherapy. Mol Cancer. 2022;21:1–18.

    Article  Google Scholar 

  137. Zhu L, Oh JM, Gangadaran P, Kalimuthu S, Baek SH, Jeong SY, et al. Targeting and therapy of glioblastoma in a mouse model using exosomes derived from natural killer cells. Front Immunol. 2018;9:824.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Salimi L, Seyedaghamiri F, Karimipour M, Mobarak H, Mardi N, Taghavi M, et al. Physiological and pathological consequences of exosomes at the blood–brain-barrier interface. Cell Commun Signal. 2023;21:1–22.

    Article  Google Scholar 

  139. Glienke W, Esser R, Priesner C, Suerth JD, Schambach A, Wels WS, et al. Advantages and applications of CAR-expressing natural killer cells. Front Pharmacol. 2015;6:21.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: a promising cellular immunotherapy for cancer. EBioMedicine. 2020;59: 102975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Golán I, Rodriguez de la Fuente L, Costoya JA. NK cell-based glioblastoma immunotherapy. Cancers. 2018;10:522.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Shaim H, Shanley M, Basar R, Daher M, Gumin J, Zamler DB, et al. Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J Clin Invest. 2021;131: e142116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Afolabi LO, Adeshakin AO, Sani MM, Bi J, Wan X. Genetic reprogramming for NK cell cancer immunotherapy with CRISPR/Cas9. Immunology. 2019;158:63–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Arnesen VS, Gras Navarro A, Chekenya M. Challenges and prospects for designer T and NK cells in glioblastoma immunotherapy. Cancers. 2021;13:4986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Stanton SE, Disis ML. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer. 2016;4:1–7.

    Article  Google Scholar 

  146. Hong JJ, Rosenberg SA, Dudley ME, Yang JC, White DE, Butman JA, et al. Successful treatment of melanoma brain metastases with adoptive cell therapy. Clin Cancer Res. 2010;16:4892–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yao Y, Chen D, Tang C, Ji C, Li Z, Qian Q. Safety, efficacy, and biomarker analysis of response to engineered tumor-infiltrating lymphocytes secreting anti-PD-1 antibody in recurrent glioblastoma: an open-label, two-arms, phase 1 study. 2023.

  148. Martínez-Lostao L, Anel A, Pardo J. How do cytotoxic lymphocytes kill cancer cells? Clin Cancer Res. 2015;21:5047–56.

    Article  PubMed  Google Scholar 

  149. Werlenius K, Stragliotto G, Strandeus M, Blomstrand M, Carén H, Jakola AS, et al. A randomized phase II trial of efficacy and safety of the immunotherapy ALECSAT as an adjunct to radiotherapy and temozolomide for newly diagnosed glioblastoma. Neuro-Oncol Adv. 2021;3: vdab156.

    Article  Google Scholar 

  150. Ghazi A, Ashoori A, Hanley P, Salsman VS, Shaffer DR, Kew Y, et al. Generation of polyclonal CMV-specific T cells for the adoptive immunotherapy of glioblastoma. J Immunother. 2012;35:159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Daei Sorkhabi A, et al. The current landscape of CAR T-cell therapy for solid tumors: mechanisms, research progress, challenges, and counterstrategies. Front Immunol. 2023;14:1113882.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Akhavan D, Alizadeh D, Wang D, Weist MR, Shepphird JK, Brown CE. CAR T cells for brain tumors: lessons learned and road ahead. Immunol Rev. 2019;290:60–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Budi HS, Ahmad FN, Achmad H, Ansari MJ, Mikhailova MV, Suksatan W, et al. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor (CAR) for tumor immunotherapy; recent progress. Stem Cell Res Ther. 2022;13:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Filley AC, Henriquez M, Dey M. CART immunotherapy: development, success, and translation to malignant gliomas and other solid tumors. Front Oncol. 2018;8:453.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Brown CE, Starr R, Aguilar B, Shami AF, Martinez C, D’Apuzzo M, et al. Stem-like tumor-initiating cells isolated from IL13Rα2 expressing gliomas are targeted and killed by IL13-zetakine–redirected T cells. Clin Cancer Res. 2012;18:2199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375:2561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Keu KV, Witney TH, Yaghoubi S, Rosenberg J, Kurien A, Magnusson R, et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med. 2017;9: e2196.

    Article  Google Scholar 

  158. Gargett T, Ebert LM, Truong NTH, Kollis PM, Sedivakova K, Yu W, et al. GD2-targeting CAR T cells enhanced by transgenic IL-15 expression are an effective and clinically feasible therapy for glioblastoma. J Immunother Cancer. 2022;10: e005187.

    Article  PubMed  PubMed Central  Google Scholar 

  159. O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9: eaaa0984.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-specific chimeric antigen receptor–modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 2017;3:1094–101.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Brakel BA, Chokshi CR, Salim SK, Venugopal C, Singh S. In vitro evaluation of CAR-T cells in patient-derived glioblastoma models. STAR Protoc. 2021;2: 100920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Choe JH, Watchmaker PB, Simic MS, Gilbert RD, Li AW, Krasnow NA, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med. 2021;13: eabe7378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yeku OO, Purdon TJ, Koneru M, Spriggs D, Brentjens RJ. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci Rep. 2017;7:10541.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  164. Hauth F, Ho AY, Ferrone S, Duda DG. Radiotherapy to enhance chimeric antigen receptor T-cell therapeutic efficacy in solid tumors: a narrative review. JAMA Oncol. 2021;7:1051–9.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Martínez Bedoya D, Dutoit V, Migliorini D. Allogeneic CAR T cells: an alternative to overcome challenges of CAR T cell therapy in glioblastoma. Front Immunol. 2021;12: 640082.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Abreu TR, Fonseca NA, Gonçalves N, Moreira JN. Current challenges and emerging opportunities of CAR-T cell therapies. J Control Release. 2020;319:246–61.

    Article  CAS  PubMed  Google Scholar 

  167. Van Gool SW, Makalowski J, Bitar M, Van de Vliet P, Schirrmacher V, Stuecker W. Synergy between TMZ and individualized multimodal immunotherapy to improve overall survival of IDH1 wild-type MGMT promoter-unmethylated GBM patients. Genes Immun. 2022;23:255–9.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Maxwell R, Jackson CM, Lim M. Clinical trials investigating immune checkpoint blockade in glioblastoma. Curr Treat Options Oncol. 2017;18:1–22.

    Article  Google Scholar 

  169. Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda F. Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol. 2018;10:1758834017742575.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Monjazeb AM, Schalper KA, Villarroel-Espindola F, Nguyen A, Shiao SL, Young K. Effects of radiation on the tumor microenvironment. In: Seminars in radiation oncology, vol. 30. New York: Elsevier; 2020. p. 145–57.

    Google Scholar 

  171. Persico P, Lorenzi E, Dipasquale A, Pessina F, Navarria P, Politi LS, et al. Checkpoint inhibitors as high-grade gliomas treatment: state of the art and future perspectives. J Clin Med. 2021;10:1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Boustani J, Lecoester B, Baude J, Latour C, Adotevi O, Mirjolet C, et al. Anti-PD-1/anti-PD-L1 drugs and radiation therapy: combinations and optimization strategies. Cancers. 2021;13:4893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Vafaei S, Zekiy AO, Khanamir RA, Zaman BA, Ghayourvahdat A, Azimizonuzi H, et al. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier. Cancer Cell Int. 2022;22:1–27.

    Article  Google Scholar 

  174. Cassetta L, Kitamura T. Macrophage targeting: opening new possibilities for cancer immunotherapy. Immunology. 2018;155:285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 2018;9:115.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Albini A, Bruno A, Noonan DM, Mortara L. Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for immunotherapy. Front Immunol. 2018;9:527.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Shen SH, Woroniecka K, Barbour AB, Fecci PE, Sanchez-Perez L, Sampson JH. CAR T cells and checkpoint inhibition for the treatment of glioblastoma. Expert Opin Biol Ther. 2020;20:579–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chan HY, Choi J, Jackson C, Lim M. Combination immunotherapy strategies for glioblastoma. J Neurooncol. 2021;151:375–91.

    Article  PubMed  Google Scholar 

  179. Cao TQ, Wainwright DA, Lee-Chang C, Miska J, Sonabend AM, Heimberger AB, et al. Next steps for immunotherapy in glioblastoma. Cancers. 2022;14:4023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mohme M, Neidert MC. Tumor-specific T cell activation in malignant brain tumors. Front Immunol. 2020;11:205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zaidi SE, Moelker E, Singh K, Mohan A, Salgado MA, Essibayi MA, et al. Novel immunotherapeutic approaches for the treatment of glioblastoma. BioDrugs. 2023;37:1–15.

    Article  Google Scholar 

  182. Tang OY, Tian L, Yoder T, Xu R, Kulikovskaya I, Gupta M, et al. PD1 expression in EGFRvIII-directed CAR T cell infusion product for glioblastoma is associated with clinical response. Front Immunol. 2022;13: 872756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lv L, Huang J, Xi H, Zhou X. Efficacy and safety of dendritic cell vaccines for patients with glioblastoma: a meta-analysis of randomized controlled trials. Int Immunopharmacol. 2020;83: 106336.

    Article  CAS  PubMed  Google Scholar 

  184. Wheeler CJ, Das A, Liu G, Yu JS, Black KL. Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res. 2004;10:5316–26.

    Article  CAS  PubMed  Google Scholar 

  185. Zhu P, Li S-Y, Ding J, Fei Z, Sun S-N, Zheng Z-H, et al. Combination immunotherapy of glioblastoma with dendritic cell cancer vaccines, anti-PD-1 and poly I: C. J Pharm Anal. 2023;13:616–24.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565:234–9.

    Article  ADS  CAS  PubMed  Google Scholar 

  187. Zheng M, Huang J, Tong A, Yang H. Oncolytic viruses for cancer therapy: barriers and recent advances. Mol Ther. 2019;15:234–47.

    Google Scholar 

  188. Ostrom QT, Rubin JB, Lathia JD, Berens ME, Barnholtz-Sloan JS. Females have the survival advantage in glioblastoma. Neuro Oncol. 2018;20:576–7.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Bellettato CM, Scarpa M. Possible strategies to cross the blood–brain barrier. Ital J Pediatr. 2018;44:127–33.

    Article  Google Scholar 

  190. Filley AC, Henriquez M, Dey M. Recurrent glioma clinical trial, CheckMate-143: the game is not over yet. Oncotarget. 2017;8:91779.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Schoen S Jr, Kilinc MS, Lee H, Guo Y, Degertekin FL, Woodworth GF, et al. Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound. Adv Drug Deliv Rev. 2022;180: 114043.

    Article  CAS  PubMed  Google Scholar 

  192. Sabbagh A, Beccaria K, Ling X, Marisetty A, Ott M, Caruso H, et al. Opening of the blood–brain barrier using low-intensity pulsed ultrasound enhances responses to immunotherapy in preclinical glioma models. Clin Cancer Res. 2021;27:4325–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Deng Z, Sheng Z, Yan F. Ultrasound-induced blood–brain-barrier opening enhances anticancer efficacy in the treatment of glioblastoma: current status and future prospects. J Oncol. 2019. https://doi.org/10.1155/2019/2345203.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Ruan S, Xie R, Qin L, Yu M, Xiao W, Hu C, et al. Aggregable nanoparticles-enabled chemotherapy and autophagy inhibition combined with anti-PD-L1 antibody for improved glioma treatment. Nano Lett. 2019;19:8318–32.

    Article  ADS  CAS  PubMed  Google Scholar 

  195. Kim GB, Aragon-Sanabria V, Randolph L, Jiang H, Reynolds JA, Webb BS, et al. High-affinity mutant Interleukin-13 targeted CAR T cells enhance delivery of clickable biodegradable fluorescent nanoparticles to glioblastoma. Bioact Mater. 2020;5:624–35.

    PubMed  PubMed Central  Google Scholar 

  196. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 2016;27:2225–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Aikins ME, Xu C, Moon JJ. Engineered nanoparticles for cancer vaccination and immunotherapy. Acc Chem Res. 2020;53:2094–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Song P, Zhao X, Xiao S. Application prospect of peptide-modified nano targeting drug delivery system combined with PD-1/PD-L1 based immune checkpoint blockade in glioblastoma. Int J Pharm. 2020;589: 119865.

    Article  CAS  PubMed  Google Scholar 

  200. Avila YI, Chandler M, Cedrone E, Newton HS, Richardson M, Xu J, et al. Induction of cytokines by nucleic acid nanoparticles (NANPs) depends on the type of delivery carrier. Molecules. 2021;26:652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ruiz-Garcia H, Ramirez-Loera C, Malouff TD, Seneviratne DS, Palmer JD, Trifiletti DM. Novel strategies for nanoparticle-based radiosensitization in glioblastoma. Int J Mol Sci. 2021;22:9673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wiwatchaitawee K, Quarterman JC, Geary SM, Salem AK. Enhancement of therapies for glioblastoma (GBM) using nanoparticle-based delivery systems. AAPS PharmSciTech. 2021;22:1–16.

    Article  Google Scholar 

  203. Huang Y, Wang H-C, Zhao J, Wu M-H, Shih T-C. Immunosuppressive roles of galectin-1 in the tumor microenvironment. Biomolecules. 2021;11:1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Van Woensel M, Mathivet T, Wauthoz N, Rosière R, Garg AD, Agostinis P, et al. Sensitization of glioblastoma tumor micro-environment to chemo-and immunotherapy by Galectin-1 intranasal knock-down strategy. Sci Rep. 2017;7:1217.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  205. Ji R, Ma L, Chen X, Sun R, Zhang L, Saiyin H, et al. Characterizing the distributions of IDO-1 expressing macrophages/microglia in human and murine brains and evaluating the immunological and physiological roles of IDO-1 in RAW264. 7/BV-2 cells. PLoS ONE. 2021;16: e0258204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Brahm CG, van Linde ME, Enting RH, Schuur M, Otten RHJ, Heymans MW, et al. The current status of immune checkpoint inhibitors in neuro-oncology: a systematic review. Cancers. 2020;12:586.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Fenton TM, Jørgensen PB, Niss K, Rubin SJS, Mörbe UM, Riis LB, et al. Immune profiling of human gut-associated lymphoid tissue identifies a role for isolated lymphoid follicles in priming of region-specific immunity. Immunity. 2020;52:557–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Schaupp L, Muth S, Rogell L, Kofoed-Branzk M, Melchior F, Lienenklaus S, et al. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell. 2020;181:1080–96.

    Article  CAS  PubMed  Google Scholar 

  209. Shi Y, Zheng W, Yang K, Harris KG, Ni K, Xue L, et al. Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J Exp Med. 2020;217: e20192282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2021;19:77–94.

    Article  CAS  PubMed  Google Scholar 

  211. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16:626–38.

    Article  CAS  PubMed  Google Scholar 

  212. Beig N, Singh S, Bera K, Prasanna P, Singh G, Chen J, et al. Sexually dimorphic radiogenomic models identify distinct imaging and biological pathways that are prognostic of overall survival in glioblastoma. Neuro Oncol. 2021;23:251–63.

    Article  PubMed  Google Scholar 

  213. Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, et al. The human tumor microbiome is composed of tumor type–specific intracellular bacteria. Science (80-). 2020;368:973–80.

    Article  CAS  Google Scholar 

  214. Vemuri R, Sylvia KE, Klein SL, Forster SC, Plebanski M, Eri R, et al. The microgenderome revealed: sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility. In: Seminars in immunopathology, vol. 41. Springer: Berlin; 2019. p. 265–75.

    Google Scholar 

  215. Lee J, Kay K, Troike K, Ahluwalia MS, Lathia JD. Sex differences in glioblastoma immunotherapy response. NeuroMol Med. 2021;24:1–6.

    Article  Google Scholar 

  216. Ippolito JE, Yim AKY, Luo J, Chinnaiyan P, Rubin JB. Sexual dimorphism in glioma glycolysis underlies sex differences in survival. JCI Insight. 2017;2: e92142.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Pilard C, Ancion M, Delvenne P, Jerusalem G, Hubert P, Herfs M. Cancer immunotherapy: it’s time to better predict patients’ response. Br J Cancer. 2021;125:927–38.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86:343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Deng MY, Debus J, König L. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma. Strahlentherapie Und Onkol Organ Der Dtsch Rontgengesellschaft [et al]. 2023;199:327–9.

    Article  Google Scholar 

  220. Li B, Severson E, Pignon J-C, Zhao H, Li T, Novak J, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016;17:1–16.

    Article  Google Scholar 

  221. Yan Y, Zeng S, Gong Z, Xu Z. Clinical implication of cellular vaccine in glioma: current advances and future prospects. J Exp Clin Cancer Res. 2020;39:1–18.

    Article  Google Scholar 

  222. Karachi A, Yang C, Dastmalchi F, Sayour EJ, Huang J, Azari H, et al. Modulation of temozolomide dose differentially affects T-cell response to immune checkpoint inhibition. Neuro Oncol. 2019;21:730–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Everson RG, Jin RM, Wang X, Safaee M, Scharnweber R, Lisiero DN, et al. Cytokine responsiveness of CD8+ T cells is a reproducible biomarker for the clinical efficacy of dendritic cell vaccination in glioblastoma patients. J Immunother Cancer. 2014;2:1–11.

    Article  Google Scholar 

  224. Qian J, Wang C, Wang B, Yang J, Wang Y, Luo F, et al. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-L1 therapy. J Neuroinflamm. 2018;15:1–13.

    Article  Google Scholar 

  225. Wu A, Maxwell R, Xia Y, Cardarelli P, Oyasu M, Belcaid Z, et al. Combination anti-CXCR4 and anti-PD-1 immunotherapy provides survival benefit in glioblastoma through immune cell modulation of tumor microenvironment. J Neurooncol. 2019;143:241–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Immunology Research Center at Tabriz University of Medical Sciences, Iran.

Author information

Authors and Affiliations

Authors

Contributions

MA, NJ, and PT have made contributions to the writing of the manuscript, participated in literature survey. PT contributed to the study design and revised of the manuscript. HS and AA-M participated in design of Tables and Figures. AM participated in answering the reviewer's comments and revising the manuscript. LA-M, PT, and BB contributed to the revised of the manuscript. All authors have approved the submitted version of the article and have agreed to be personally accountable for the author’s own contributions and to ensure that questions related to the accuracy or integrity of any part of the work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Leili Aghebati-Maleki or Behzad Baradaran.

Ethics declarations

Informed consent

Not applicable.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghajani, M., Jalilzadeh, N., Aghebati-Maleki, A. et al. Current approaches in glioblastoma multiforme immunotherapy. Clin Transl Oncol (2024). https://doi.org/10.1007/s12094-024-03395-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12094-024-03395-7

Keywords

Navigation