Skip to main content

Advertisement

Log in

Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

An Erratum to this article was published on 12 April 2007

Abstract

Mounting evidence suggests that gliomas are comprised of differentiated tumor cells and brain tumor stem cells (BTSCs). BTSCs account for a fraction of total tumor cells, yet are apparently the sole cells capable of tumor initiation and tumor renewal. BTSCs have been identified as the CD133-positive fraction of human glioma, whereas their CD133-negative daughter cells have limited proliferative ability and are not tumorogenic. It is well established that the bulk tumor mass escapes immune surveillance by multiple mechanisms, yet little is known about the immunogenicity of the CD133-positive fraction of the tumor mass. We investigated the immunogenicity of CD133-positive cells in two human astrocytoma and two glioblastoma multiforme samples. Flow cytometry analyses revealed that the majority of CD133-positive cells do not express detectable MHC I or natural killer (NK) cell activating ligands, which may render them resistant to adaptive and innate immune surveillance. Incubating CD133-positive cells in interferon gamma (INF-γ) significantly increased the percentage of CD133-positive cells that expressed MHC I and NK cell ligands. Furthermore, pretreatment of CD133-positive cells with INF-γ rendered them sensitive to NK cell-mediated lysis in vitro. There were no consistent differences in immunogenicity between the CD133-positive and CD133-negative cells in these experiments. We conclude that CD133-posistive and CD133-negative glioma cells may be similarly resistant to immune surveillance, but that INF-γ may partially restore their immunogenicity and potentiate their lysis by NK cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weller M, Thomas DGT (2003) Primary tumors of the central and peripheral nervous system. In: Brandt T, Caplan LR, Dichgans J, Diener HC, Kennard C (eds) Course and treatment of neurological disorders. Academic Press, San Deigo, CA, pp827–863

    Google Scholar 

  2. Wiesner SM, Freese A, Ohlfest JR (2005) Emerging concepts in glioma biology: implications for clinical protocols and rational treatment strategies. Neurosurg Focus 19:E3:1–6

    Article  Google Scholar 

  3. Fecci PE, Mitchell DA, Archer GE, Morse MA, Lyerly HK, Bigner DD, Sampson JH (2003) The history, evolution, and clinical use of dendritic cell-based immunization strategies in the therapy of brain tumors. J Neurooncol 64:161–176

    Article  PubMed  Google Scholar 

  4. Parney IF, Hao C, Petruk KC (2000) Glioma immunology and immunotherapy. Neurosurgery 46:778–791

    Article  PubMed  CAS  Google Scholar 

  5. King GD, Curtin JF, Candolfi M, Kroeger K, Lowenstein PR, Castro MG (2005) Gene therapy and targeted toxins for glioma. Curr Gene Ther 5:535–557

    Article  PubMed  CAS  Google Scholar 

  6. Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, Lin JW, Chute DJ, Mischel PS, Cloughesy TF, Roth MD (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11:5515–5525

    Article  PubMed  CAS  Google Scholar 

  7. Yamanaka R, Homma J, Yajima N, Tsuchiya N, Sano M, Kobayashi T, Yoshida S, Abe T, Narita M, Takahashi M, Tanaka R (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11:4160–4167

    Article  PubMed  CAS  Google Scholar 

  8. Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979

    Article  PubMed  CAS  Google Scholar 

  9. Toren A, Bielorai B, Jacob-Hirsch J, Fisher T, Kreiser D, Moran O, Zeligson S, Givol D, Yitzhaky A, Itskovitz-Eldor J, Kventsel I, Rosenthal E, Amariglio N, Rechavi G (2005) CD133-positive hematopoietic stem cell “stemness” genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells 23:1142–1153

    Article  PubMed  CAS  Google Scholar 

  10. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  PubMed  CAS  Google Scholar 

  11. Al-Hajj M, Wicha MS, ito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  12. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    Article  PubMed  CAS  Google Scholar 

  13. Polyak K, Hahn WC (2006) Roots and stems: stem cells in cancer. Nat Med 12:296–300

    Article  PubMed  CAS  Google Scholar 

  14. Yin AH, Miraglia S, Zanjani ED, meida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012

    PubMed  CAS  Google Scholar 

  15. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  16. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  17. Li MC, Deng YW, Wu J, Chen FH, Liu JF, Fang JS (2006) Isolation and characterization of brain tumor stem cells in human medulloblastoma. Ai Zheng 25:241–246

    PubMed  Google Scholar 

  18. Nakano I, Kornblum HI (2006) Brain tumor stem cells. Pediatr Res 59:54R–58R

    Article  PubMed  Google Scholar 

  19. Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400

    Article  PubMed  CAS  Google Scholar 

  20. Van KL (2002) Major histocompatibility complex class I-restricted antigen processing and presentation. Tissue Antigens 60:1–9

    Article  Google Scholar 

  21. Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A, Weller M (2004) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64:7596–7603

    Article  PubMed  CAS  Google Scholar 

  22. Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A (2005) Human natural killer cells: molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunol Lett 100:7–13

    Article  PubMed  CAS  Google Scholar 

  23. Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SE, Yagita H, Takeda K, van Dommelen SL, gli-Esposti MA, Hayakawa Y (2005) Activation of NK cell cytotoxicity. Mol Immunol 42:501–510

    Article  PubMed  CAS  Google Scholar 

  24. Sivori S, Parolini S, Marcenaro E, Castriconi R, Pende D, Millo R, Moretta A (2000) Involvement of natural cytotoxicity receptors in human natural killer cell-mediated lysis of neuroblastoma and glioblastoma cell lines. J Neuroimmunol 107:220–225

    Article  PubMed  CAS  Google Scholar 

  25. Yokoyama WM, Kim S (2006) How do natural killer cells find self to achieve tolerance? Immunity 24:249–257

    Article  PubMed  CAS  Google Scholar 

  26. Sivori S, Falco M, Marcenaro E, Parolini S, Biassoni R, Bottino C, Moretta L, Moretta A (2002) Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc Natl Acad Sci USA 99:4526–4531

    Article  PubMed  CAS  Google Scholar 

  27. Piriou L, Chilmonczyk S, Genetet N, Albina E (2000) Design of a flow cytometric assay for the determination of natural killer and cytotoxic T-lymphocyte activity in human and in different animal species. Cytometry 41:289–297

    Article  PubMed  CAS  Google Scholar 

  28. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De VS, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Google Scholar 

  29. Satoh E, Mabuchi T, Satoh H, Asahara T, Nukui H, Naganuma H (2006) Reduced expression of the transporter associated with antigen processing 1 molecule in malignant glioma cells, and its restoration by interferon-gamma and -beta. J Neurosurg 104:264–271

    PubMed  CAS  Google Scholar 

  30. Yang I, Kremen TJ, Giovannone AJ, Paik E, Odesa SK, Prins RM, Liau LM (2004) Modulation of major histocompatibility complex Class I molecules and major histocompatibility complex-bound immunogenic peptides induced by interferon-alpha and interferon-gamma treatment of human glioblastoma multiforme. J Neurosurg 100:310–319

    Article  PubMed  CAS  Google Scholar 

  31. Propper DJ, Chao D, Braybrooke JP, Bahl P, Thavasu P, Balkwill F, Turley H, Dobbs N, Gatter K, Talbot DC, Harris AL, Ganesan TS (2003) Low-dose IFN-gamma induces tumor MHC expression in metastatic malignant melanoma. Clin Cancer Res 9:84–92

    PubMed  CAS  Google Scholar 

  32. Gastl G, Ebert T, Finstad CL, Sheinfeld J, Gomahr A, Aulitzky W, Bander NH (1996) Major histocompatibility complex class I and class II expression in renal cell carcinoma and modulation by interferon gamma. J Urol 155:361–367

    Article  PubMed  CAS  Google Scholar 

  33. Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 99:9864–9869

    Article  PubMed  CAS  Google Scholar 

  34. Campbell KS, Colonna M (2001) Human natural killer cell receptors and signal transduction. Int Rev Immunol 20:333–370

    PubMed  CAS  Google Scholar 

  35. Orange JS, Ballas ZK (2006) Natural killer cells in human health and disease. Clin Immunol 118:1–10

    Article  PubMed  CAS  Google Scholar 

  36. Papamichail M, Perez SA, Gritzapis AD, Baxevanis CN (2004) Natural killer lymphocytes: biology, development, and function. Cancer Immunol Immunother 53:176–186

    Article  PubMed  Google Scholar 

  37. Binstadt BA, Brumbaugh KM, Leibson PJ (1997) Signal transduction by human NK cell MHC-recognizing receptors. Immunol Rev 155:197–203

    Article  PubMed  CAS  Google Scholar 

  38. Raffaghello L, Prigione I, Airoldi I, Camoriano M, Levreri I, Gambini C, Pende D, Steinle A, Ferrone S, Pistoia V (2004) Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia 6:558–568

    Article  PubMed  CAS  Google Scholar 

  39. Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L (1999) Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5:405–411

    Article  PubMed  CAS  Google Scholar 

  40. Kalinski P, Giermasz A, Nakamura Y, Basse P, Storkus WJ, Kirkwood JM, Mailliard RB (2005) Helper role of NK cells during the induction of anticancer responses by dendritic cells. Mol Immunol 42:535–539

    Article  PubMed  CAS  Google Scholar 

  41. Asadullah K, Sterry W, Trefzer U (2002) Cytokine therapy in dermatology. Exp Dermatol 11:97–106

    Article  PubMed  CAS  Google Scholar 

  42. Saleh M, Jonas NK, Wiegmans A, Stylli SS (2000) The treatment of established intracranial tumors by in situ retroviral IFN-gamma transfer. Gene Ther 7:1715–1724

    Article  PubMed  CAS  Google Scholar 

  43. Ehtesham M, Samoto K, Kabos P, Acosta FL, Gutierrez MA, Black KL, Yu JS (2002) Treatment of intracranial glioma with in situ interferon-gamma and tumor necrosis factor-alpha gene transfer. Cancer Gene Ther 9:925–934

    Article  PubMed  CAS  Google Scholar 

  44. Ni HT, Spellman SR, Jean WC, Hall WA, Low WC (2001) Immunization with dendritic cells pulsed with tumor extract increases survival of mice bearing intracranial gliomas. J Neurooncol 51:1–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Ohlfest.

Additional information

Walter C. Low, and John R. Ohlfest contributed equally as senior authors.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11060-006-9307-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, A., Wiesner, S., Xiao, J. et al. Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy. J Neurooncol 83, 121–131 (2007). https://doi.org/10.1007/s11060-006-9265-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-006-9265-3

Keywords

Navigation