Skip to main content

Advertisement

Log in

The role of the mitochondrial ribosomal protein family in detecting hepatocellular carcinoma and predicting prognosis, immune features, and drug sensitivity

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors, with a slow onset, rapid progression, and frequent recurrence. Previous research has implicated mitochondrial ribosomal genes in the development, metastasis, and prognosis of various cancers. However, further research is necessary to establish a link between mitochondrial ribosomal protein (MRP) family expression and HCC diagnosis, prognosis, ferroptosis-related gene (FRG) expression, m6A modification-related gene expression, tumor immunity, and drug sensitivity.

Methods

Bioinformatics resources were used to analyze data from patients with HCC retrieved from the TCGA, ICGC, and GTEx databases (GEPIA, UALCAN, Xiantao tool, cBioPortal, STRING, Cytoscape, TISIDB, and GSCALite).

Results

Among the 82 MRP family members, 14 MRP genes (MRPS21, MRPS23, MRPL9, DAP3, MRPL13, MRPL17, MRPL24, MRPL55, MRPL16, MRPL14, MRPS17, MRPL47, MRPL21, and MRPL15) were significantly upregulated differentially expressed genes (DEGs) in HCC tumor samples in comparison to normal samples. Receiver-operating characteristic curve analysis indicated that all 14 DEGs show good diagnostic performance. Furthermore, TCGA analysis revealed that the mRNA expression of 39 MRPs was associated with overall survival (OS) in HCC. HCC was divided into two molecular subtypes (C1 and C2) with distinct prognoses using clustering analysis. The clusters showed different FRG expression and m6A methylation profiles and immune features, and prognostic models showed that the model integrating 5 MRP genes (MRPS15, MRPL3, MRPL9, MRPL36, and MRPL37) and 2 FRGs (SLC1A5 and SLC5A11) attained a greater clinical net benefit than three other prognostic models. Finally, analysis of the CTRP and GDSC databases revealed several potential drugs that could target prognostic MRP genes.

Conclusion

We identified 14 MRP genes as HCC diagnostic markers. We investigated FRG and m6A modification-related gene expression profiles and immune features in patients with HCC, and developed and validated a model incorporating MRP and FRG expression that accurately and reliably predicts HCC prognosis and may predict disease progression and treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this article. Further enquiries can be directed to the corresponding author.

References

  1. Kao JH, Chen DS. Changing disease burden of hepatocellular carcinoma in the Far East and Southeast Asia. Liver Int. 2005;25:696–703.

    Article  PubMed  Google Scholar 

  2. McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of Hepatocellular Carcinoma. Hepatology. 2021;73(Suppl 1):4–13. https://doi.org/10.1002/hep.31288.

    Article  CAS  PubMed  Google Scholar 

  3. Lohitesh K, Chowdhury R, Mukherjee S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell Int. 2018;18:44. https://doi.org/10.1186/s12935-018-0538-7. (PMID:29568237).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A. Mitochondrial ribosome assembly in health and disease. Cell Cycle. 2015;14(14):2226–50. https://doi.org/10.1080/15384101.2015.1053672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mai N, Chrzanowska-Lightowlers ZM, Te Lightowlers RN. process of mammalian mitochondrial protein synthesis. Cell Tissue Res. 2017;367:5–20. https://doi.org/10.1007/s00441-016-2456-0.

    Article  CAS  PubMed  Google Scholar 

  6. Wazir U, Orakzai MM, Khanzada ZS, Jiang WG, Sharma AK, Kasem A, et al. The role of death-associated protein 3 in apoptosis, anoikis and human cancer. Cancer Cell Int. 2015;15:39. https://doi.org/10.1186/s12935-015-0187-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Conde JA, Claunch CJ, Romo HE, Benito-Martin A, Ballestero RP, Gonzalez-Garcia M. Identifification of a Motif in BMRP required for interaction With Bcl-2 by site-directed mutagenesis studies. J Cell Biochem. 2012;113(11):3498–508. https://doi.org/10.1002/jcb.24226.

    Article  CAS  PubMed  Google Scholar 

  8. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  9. Lee Y-K, Lim JJ, Jeoun U-W, Min S, Lee E-B, Kwon SM, et al. Lactate-mediated mitoribosomal defects impair mitochondrial oxidative phosphorylation and promote hepatoma cell invasiveness. J Biol Chem. 2017;292:20208–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pu M, Wang J, Huang Q, Zhao G, Xia C, Shang R, et al. High MRPS23 expression contributes to hepatocellular carcinoma proliferation and indicates poor survival outcomes. Tumour Biol. 2017. https://doi.org/10.1177/1010428317709127.

    Article  PubMed  Google Scholar 

  11. Zhou C, Chen Z, Peng C, Chen C, Li H. Long Noncoding RNA TRIM52-AS1 sponges miR-514a-5p to facilitate hepatocellular carcinoma progression through increasing MRPS18A. Cancer Biother Radiopharm. 2021;36(2):211–9.

    CAS  PubMed  Google Scholar 

  12. Zhuang R, Lu D, Zhuo J, Zhang X, Wang K, Wei X, et al. CR6-interacting factor 1 inhibits invasiveness by suppressing TGF-β-mediated epithelial-mesenchymal transition in hepatocellular carcinoma. Oncotarget. 2017;8:94759–68.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV. Iron and cancer: recent insights. Ann NY Acad Sci. 2016;1368:149–61. https://doi.org/10.1111/nyas.13008.

    Article  CAS  PubMed  Google Scholar 

  14. Li C, Zhang Y, Liu J, Kang R, Klionsky DJ, Tang D. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy. 2021;17:948–60. https://doi.org/10.1080/15548627.2020.1739447.

    Article  CAS  PubMed  Google Scholar 

  15. Tang B, Zhu J, Li J, Fan K, Gao Y, Cheng S, et al. The ferroptosis and iron-metabolism signature robustly predicts clinical diagnosis, prognosis and immune microenvironment for hepatocellular carcinoma. Cell Commun Signal. 2020;18(1):174. https://doi.org/10.1186/s12964-020-00663-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu J, Wang J-Q. Research mechanisms of and pharmaceutical treatments for ferroptosis in liver diseases. Biochimie. 2021;180:149–57. https://doi.org/10.1016/j.biochi.2020.11.002.

    Article  CAS  PubMed  Google Scholar 

  17. Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T. The critical role of RNA m6A methylation in cancer. Cancer Res. 2019;79(7):1285–92.

    Article  CAS  PubMed  Google Scholar 

  18. He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18(1):176.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen XY, Zhang J, Zhu JS. The role of m6A RNA methylation in human cancer. Mol Cancer. 2019;18(1):103.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ye J, Wang Z, Chen X, Jiang X, Dong Z, Hu S, Li W, et al. YTHDF1-enhanced iron metabolism depends on TFRC m(6)A methylation. Theranostics. 2020;10(26):12072–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song Z, Jia G, Ma P, Cang S. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modifcation-mediated ferroptosis. Life Sci. 2021;276: 119399.

    Article  CAS  PubMed  Google Scholar 

  22. The Cancer Genome Atlas Network. Genomic classifification of cutaneous melanoma. Cell. 2015;161(7):1681–96. https://doi.org/10.1016/j.cell.2015.05.044.

    Article  CAS  PubMed Central  Google Scholar 

  23. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profling and interactive analysis. Nucl Acids Res. 2019;47:W556–60. https://doi.org/10.1093/nar/gkz430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27. https://doi.org/10.1016/j.neo.2022.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yan Y, Li J, Ye M, Li Z, Li S. Tropomyosin is potential markers for the diagnosis and prognosis of bladder cancer. Dis Markers. 2022;2022:6936262. https://doi.org/10.1155/2022/6936262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen F, Chandrashekar D, Varambally S, Creighton C. Pan-cancer molecular subtypes revealed by mass-spectrometry-based proteomic characterization of more than 500 human cancers. Nat Commun. 2019;10:5679. https://doi.org/10.1038/s41467-019-13528-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profles using the cBioPortal. Sci Signal. 2013;6:269. https://doi.org/10.1126/scisignal.2004088.

    Article  CAS  Google Scholar 

  28. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucl Acids Res. 2021;49:D605–12. https://doi.org/10.1093/nar/gkaa1074.

    Article  CAS  PubMed  Google Scholar 

  29. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a sofware environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504. https://doi.org/10.1101/gr.1239303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Z, Lin E, Zhuang H, Xie L, Feng X, Liu J, et al. Construction of a novel gene-based model for prognosis prediction of clear cell renal cell carcinoma. Cancer Cell Int. 2020;20:27. https://doi.org/10.1186/s12935-020-1113-6. (eCollection 2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu CJ, Hu FF, Xia MX, Han L, Zhang Q, Guo AY. GSCALite: a web server for gene set cancer analysis. Bioinformatics. 2018;34(21):3771–2. https://doi.org/10.1093/bioinformatics/bty411.

    Article  CAS  PubMed  Google Scholar 

  32. Liu Z, Zhao Q, Zuo ZX, Yuan SQ, Yu K, Zhang Q, et al. Systematic analysis of the aberrances and functional implications of ferroptosis in cancer. iScience. 2020;23(7):101302. https://doi.org/10.1016/j.isci.2020.101302. (10.1016/j.isci.2020.101302).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Y, Xiao J, Bai J, Tian Y, Qu Y, Chen X, et al. Molecular characterization and clinical relevance of m6A regulators across 33 cancer types. Mol Cancer. 2019;18(1):137. https://doi.org/10.1186/s12943-019-1066-3.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509–14. https://doi.org/10.1093/nar/gkaa407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ravi R, Noonan KA, Pham V, Bedi R, Zhavoronkov A, Ozerov IV, et al. Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat Commun. 2018;9(1):741. https://doi.org/10.1038/s41467-017-02696-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–8. https://doi.org/10.1038/s41591-018-0136-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux PJ, et al. Discrimination and calibration of clinical prediction models: users’ guides to the medical literature. JAMA. 2017;318(14):1377–84. https://doi.org/10.1001/jama.2017.12126.

    Article  PubMed  Google Scholar 

  38. Chang CW, Wei Z, Durell SR, Ma L, Forgues M, Wang XW. A compendium of co-regulated mitoribosomal proteins in pan-cancer uncovers collateral defective events in tumor malignancy. iScience. 2022;25(10):105244. https://doi.org/10.1016/j.isci.2022.105244. (eCollection 2022 Oct 21).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin X, Guo L, Lin X, Wang Y, Zhang G. Expression and prognosis analysis of mitochondrial ribosomal protein family in breast cancer. Sci Rep. 2022;12(1):10658. https://doi.org/10.1038/s41598-022-14724-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li XQ, Guo YY, De W. DNA Methylation and microRNAs in Cancer. World J Gastroenterol. 2012;18(9):882–8. https://doi.org/10.3748/wjg.v18.i9.882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Timp W, Feinberg AP. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer. 2013;13:497–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wei Z, Jia J, Heng G, Xu H, Shan J, Wang G, et al. Sirtuin-1/Mitochondrial Ribosomal protein S5 axis enhances the metabolic flexibility of liver cancer stem cells. Hepatology. 2019;70(4):1197–213. https://doi.org/10.1002/hep.30622.

    Article  CAS  PubMed  Google Scholar 

  43. Kim SJ, Kwon MC, Ryu MJ, Chung HK, Tadi S, Kim YK, et al. CRIF1 is essential for the synthesis and insertion of oxidative phosphorylation polypeptides in the mammalian mitochondrial membrane. Cell Metab. 2012;16:274–83.

    Article  CAS  PubMed  Google Scholar 

  44. Chang H, Li J, Qu K, Wan Y, Liu S, Zheng W, et al. CRIF1 overexpression facilitates tumor growth and metastasis through inducing ROS/NFkappaB pathway in hepatocellular carcinoma. Cell Death Dis. 2020;11:332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu L, He J, Sun G, Huang N, Bian Z, Xu C, et al. The N6-methyladenosine modification enhances ferroptosis resistance through inhibiting SLC7A11 mRNA deadenylation in hepatoblastoma. Clin Transl Med. 2022;12(5):e778. https://doi.org/10.1002/ctm2.778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature. 2019;566:270–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569:270–4. https://doi.org/10.1038/s41586-019-1170-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu J, Lu J, Li W. A comprehensive prognostic and immunological analysis of a new three-gene signature in hepatocellular carcinoma. Stem Cells Int. 2021;2021:5546032. https://doi.org/10.1155/2021/5546032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li M, Liu Z, Wang J, Liu H, Gong H, Li S, et al. Systematic analysis identifies a specifific RNA-binding protein-related gene model for prognostication and risk-adjustment in HBV-related hepatocellular carcinoma. Front Genet. 2021;12:707305. https://doi.org/10.3389/fgene.2021.707305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pu M, Wang J, Huang Q, Zhao G, Xia C, Shang R, et al. High MRPS23 expression contributes to hepatocellular carcinoma proliferation and indicates poor survival outcomes. Tumour Biol. 2017;39:1010428317709127.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the hard and dedicated work of all the staff that implemented the intervention and evaluation components of the study.

Funding

This work was supported by The National Key Research and Development Program of China (2021YFC2600200), the National Nature Science Foundation of China (No. 81801972), Science and Technology Research Project of Jilin Provincial Department of Education (JKH20211179KJ; 2016444), and the Jilin Provincial Nature Science Foundation of Jilin Provincial Department of Science and Technology (20200201544JC; 20210101341JC).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the research: ZJW and YL. Acquisition of data: CXH, ZWY, and XL. Analysis and interpretation of the data: ZWY and XL. Statistical analysis: XL, SJC, and CXH. Obtaining financing: ZJW and YL. Writing of the manuscript: ZJW and ZWY. Critical revision of the manuscript for intellectual content: ZJW and YL. All authors read and approved the final draft.

Corresponding author

Correspondence to Lu Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

There was no need for ethical approval, as all data analyzed were obtained from public databases.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, JW., Zhao, WY., Cui, XH. et al. The role of the mitochondrial ribosomal protein family in detecting hepatocellular carcinoma and predicting prognosis, immune features, and drug sensitivity. Clin Transl Oncol 26, 496–514 (2024). https://doi.org/10.1007/s12094-023-03269-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03269-4

Keywords

Navigation