Skip to main content
Log in

Genetic architecture of mammographic density as a risk factor for breast cancer: a systematic review

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Mammography Density (MD) is a potential risk marker that is influenced by genetic polymorphisms and can subsequently modulate the risk of breast cancer. This qualitative systematic review summarizes the genes and biological pathways involved in breast density and discusses the potential clinical implications in view of the genetic risk profile for breast density.

Methods

The terms related to “Common genetic variations” and “Breast density” were searched in Scopus, PubMed, and Web of Science databases. Gene pathways analysis and assessment of protein interactions were also performed.

Results

Eighty-six studies including 111 genes, reported a significant association between mammographic density in different populations. ESR1, IGF1, IGFBP3, and ZNF365 were the most prevalent genes. Moreover, estrogen metabolism, signal transduction, and prolactin signaling pathways were significantly related to the associated genes. Mammography density was an associated phenotype, and eight out of 111 genes, including COMT, CYP19A1, CYP1B1, ESR1, IGF1, IGFBP1, IGFBP3, and LSP1, were modifiers of this trait.

Conclusion

Genes involved in developmental processes and the evolution of secondary sexual traits play an important role in determining mammographic density. Due to the effect of breast tissue density on the risk of breast cancer, these genes may also be associated with breast cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data is available.

References

  1. Velazquez ER, Parmar C, Liu Y, Coroller TP, Cruz G, Stringfield O, et al. Somatic mutations drive distinct imaging phenotypes in lung cancer. Can Res. 2017;77(14):3922–30.

    Article  Google Scholar 

  2. Coughlin SS, Piper M. Genetic polymorphisms and risk of breast cancer. Cancer Epidemiol Prevent Biomark. 1999;8(11):1023–32.

    CAS  Google Scholar 

  3. Stone J, Dite GS, Gunasekara A, English DR, McCredie MR, Giles GG, et al. The heritability of mammographically dense and nondense breast tissue. Cancer Epidemiol Prevent Biomark. 2006;15(4):612–7.

    Article  Google Scholar 

  4. Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G, et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat Genet. 2020;52(6):572–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nickels S, Truong T, Hein R, Stevens K, Buck K, Behrens S, et al. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors. PLoS Genet. 2013;9(3):e1003284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McCormack VA, dos Santos SI. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Prevent Biomark. 2006;15(6):1159–69.

    Article  Google Scholar 

  7. Nachtigall LE. Breast density as a clinical entity: is it a marker for breast cancer? Menopause. 2007;14(3):345–6.

    Article  PubMed  Google Scholar 

  8. Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005;6(10):798–808.

    Article  PubMed  Google Scholar 

  9. Ghoussaini M, Fletcher O, Michailidou K, Turnbull C, Schmidt MK, Dicks E, et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat Genet. 2012;44(3):312–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khorshid Shamshiri A, Afzaljavan F, Alidoust M, Taherian V, Vakili F, Moezzi A, et al. ESR1 gene variants, haplotypes and diplotypes may influence the risk of breast cancer and mammographic density. Mol Biol Rep. 2020;47(11):8367–75.

    Article  CAS  PubMed  Google Scholar 

  11. Rutter CM, Mandelson MT, Laya MB, Taplin S. Changes in breast density associated with initiation, discontinuation, and continuing use of hormone replacement therapy. JAMA. 2001;285(2):171–6.

    Article  CAS  PubMed  Google Scholar 

  12. Rethlefsen ML, Kirtley S, Waffenschmidt S, Ayala AP, Moher D, Page MJ, et al. PRISMA-S: an extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst Rev. 2021;10(1):39.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.

    Article  PubMed  Google Scholar 

  14. Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65(9):934–9.

    Article  PubMed  Google Scholar 

  15. Savitz J, Solms M, Ramesar R. The molecular genetics of cognition: dopamine, COMT and BDNF. Genes Brain Behav. 2006;5(4):311–28.

    Article  CAS  PubMed  Google Scholar 

  16. Maclusky NJ, Naftolin F, Krey LC, Franks S. The catechol estrogens. J Steroid Biochem. 1981;15:111–24.

    Article  CAS  PubMed  Google Scholar 

  17. Qin X, Peng Q, Qin A, Chen Z, Lin L, Deng Y, et al. Association of COMT Val158Met polymorphism and breast cancer risk: an updated meta-analysis. Diagn Pathol. 2012;7(1):136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Warren R, Skinner J, Sala E, Denton E, Dowsett M, Folkerd E, et al. Associations among mammographic density, circulating sex hormones, and polymorphisms in sex hormone metabolism genes in postmenopausal women. Cancer Epidemiol Biomark Prev. 2006;15(8):1502–8.

    Article  CAS  Google Scholar 

  19. Haiman CA, Hankinson SE, Vivo ID, Guillemette C, Ishibe N, Hunter DJ, et al. Polymorphisms in steroid hormone pathway genes and mammographic density. Breast Cancer Res Treat. 2003;77(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  20. Takata Y, Maskarinec G, Le Marchand L. Breast density and polymorphisms in genes coding for CYP1A2 and COMT: the Multiethnic Cohort. BMC Cancer. 2007;7(1):1–7.

    Article  Google Scholar 

  21. Hong C-C, Thompson HJ, Jiang C, Hammond GL, Tritchler D, Yaffe M, et al. Val158Met Polymorphism in catechol-o-methyltransferase gene associated with risk factors for breast cancer. Cancer Epidemiol Prevent Biomark. 2003;12(9):838–47.

    CAS  Google Scholar 

  22. Haiman CA, Bernstein L, Berg DVD, Ingles SA, Salane M, Ursin G. Genetic determinants of mammographic density. Breast Cancer Res. 2002;4(3):1–6.

    Article  Google Scholar 

  23. Maskarinec G, Lurie G, Williams AE, Le Marchand L. An investigation of mammographic density and gene variants in healthy women. Int J Cancer. 2004;112(4):683–8.

    Article  CAS  PubMed  Google Scholar 

  24. Baravalle R, Di Nardo G, Bandino A, Barone I, Catalano S, Andò S, et al. Impact of R264C and R264H polymorphisms in human aromatase function. J Steroid Biochem Mol Biol. 2017;167:23–32.

    Article  CAS  PubMed  Google Scholar 

  25. Badawi AF, Cavalieri EL, Rogan EG. Role of human cytochrome P450 1A1, 1A2, 1B1, and 3A4 in the 2-, 4-, and 16 [alpha]-hydroxylation of 17 [beta]-estradiol. Metabol Clin Exp. 2001;50(9):1001–3.

    Article  CAS  Google Scholar 

  26. Alwan AM, Afzaljavan F, Tavakol Afshari J, Homaei Shandiz F, Barati Bagherabad M, Vahednia E, et al. The impact of CYP19A1 variants and haplotypes on breast cancer risk, clinicopathological features and prognosis. Mol Genet Genomic Med. 2021;9(7):e1705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Flote VG, Furberg A-S, McTiernan A, Frydenberg H, Ursin G, Iversen A, et al. Gene variations in oestrogen pathways, CYP19A1, daily 17β-estradiol and mammographic density phenotypes in premenopausal women. Breast Cancer Res. 2014;16(6):1–12.

    Article  Google Scholar 

  28. Artigalás O, Vanni T, Hutz MH, Ashton-Prolla P, Schwartz IV. Influence of CYP19A1 polymorphisms on the treatment of breast cancer with aromatase inhibitors: a systematic review and meta-analysis. BMC Med. 2015;13(1):1–10.

    Article  Google Scholar 

  29. Economopoulos KP, Sergentanis TN. Three polymorphisms in cytochrome P450 1B1 (CYP1B1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2010;122(2):545–51.

    Article  CAS  PubMed  Google Scholar 

  30. Paracchini V, Raimondi S, Gram IT, Kang D, Kocabas NA, Kristensen VN, et al. Meta-and pooled analyses of the cytochrome P-450 1B1 Val432Leu polymorphism and breast cancer: a HuGE–GSEC review. Am J Epidemiol. 2007;165(2):115–25.

    Article  PubMed  Google Scholar 

  31. Lacroix M, Leclercq G. About GATA3, HNF3A, and XBP1, three genes co-expressed with the oestrogen receptor-α gene (ESR1) in breast cancer. Mol Cell Endocrinol. 2004;219(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  32. Li T, Zhao J, Yang J, Ma X, Dai Q, Huang H, et al. A Meta-Analysis of the Association between ESR1 Genetic Variants and the Risk of Breast Cancer. PLoS ONE. 2016;11(4):e0153314.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hu X, Jiang L, Tang C, Ju Y, Jiu L, Wei Y, et al. Association of three single nucleotide polymorphisms of ESR1 with breast cancer susceptibility: a meta-analysis. J Biomed Res. 2017;31(3):213.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang W, He X, He C, Peng L, Xing S, Li D, et al. Impact of ESR1 Polymorphisms on Risk of Breast Cancer in the Chinese Han Population. Clin Breast Cancer. 2021;21(3):e235–42.

    Article  CAS  PubMed  Google Scholar 

  35. Fjeldheim FN, Frydenberg H, Flote VG, McTiernan A, Furberg AS, Ellison PT, et al. Polymorphisms in the estrogen receptor alpha gene (ESR1), daily cycling estrogen and mammographic density phenotypes. BMC Cancer. 2016;16(1):776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hartmann B, Laml T, Albrecht A, Huber J, Kirchengast S. Hormonal breast augmentation: prognostic relevance of insulin-like growth factor-I. Gynecol Endocrinol. 1998;12(2):123–7.

    Article  CAS  PubMed  Google Scholar 

  37. Tamimi RM, Cox DG, Kraft P, Pollak MN, Haiman CA, Cheng I, et al. Common genetic variation in IGF1, IGFBP-1, and IGFBP-3 in relation to mammographic density: a cross-sectional study. Breast Cancer Res. 2007;9(1):1–13.

    Article  Google Scholar 

  38. Verheus M, Maskarinec G, Woolcott CG, Haiman CA, Le Marchand L, Henderson BE, et al. IGF1, IGFBP1, and IGFBP3 genes and mammographic density: The Multiethnic Cohort. Int J Cancer. 2010;127(5):1115–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu G-P, Chen W-X, Xie W-Y, Wu L-F. The association between IGF1 gene rs1520220 polymorphism and cancer susceptibility: a meta-analysis based on 12,884 cases and 58,304 controls. Environ Health Prev Med. 2018;23(1):1–10.

    Article  Google Scholar 

  40. Xu G-P, Chen W-X, Xie W-Y, Wu L-F. The association between IGF1 Gene 3’-UTR polymorphisms and cancer risk: a meta-analysis. Medicine. 2018. https://doi.org/10.1097/MD.0000000000013829.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cooke DW, Divall SA, Radovick S. Chapter 24 - Normal and Aberrant Growth in Children. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, editors. Williams Textbook of endocrinology. Thirteenth. Philadelphia: Elsevier; 2016. p. 964–1073.

    Chapter  Google Scholar 

  42. Ma X, Kang H, Dai Z, Ma L, Jin Y, Wang X. Impact of the IGFBP3 A-202C polymorphism on susceptibility and clinicopathologic features of breast cancer. Biomed Pharmacother. 2015;71:108–11.

    Article  CAS  PubMed  Google Scholar 

  43. Qiu L-X, Yao L, Yuan H, Mao C, Chen B, Zhan P, et al. IGFBP3 A-202C polymorphism and breast cancer susceptibility: a meta-analysis involving 33,557 cases and 45,254 controls. Breast Cancer Res Treat. 2010;122(3):867–71.

    Article  PubMed  Google Scholar 

  44. Li Y, Guerrero A, Howard TH. The actin-binding protein, lymphocyte-specific protein 1, is expressed in human leukocytes and human myeloid and lymphoid cell lines. J Immunol. 1995;155(7):3563.

    Article  CAS  PubMed  Google Scholar 

  45. Tang J, Li H, Luo J, Mei H, Peng L, Li X. The LSP1 rs3817198 T> C polymorphism contributes to increased breast cancer risk: a meta-analysis of twelve studies. Oncotarget. 2016;7(39):63960.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moghaddam AS, Roodgar M, Mansourpour H, Jarrahi AM. Dominant and recessive genetic models of LSP1 gene rs3817198 polymorphism and breast cancer risk: a systematic review and meta-analysis study. Asian Pacific J Cancer Biol. 2018;3(1):5–9.

    Article  CAS  Google Scholar 

  47. Afzaljavan F, Moezzi A, Vahednia E, Shamshiri AK, Vakili F, Shandiz FH, et al. Predictive and prognostic value of LSP1 rs3817198 in sporadic breast cancer in northeastern population of Iran. Exp Mol Pathol. 2020;116:104514.

    Article  CAS  PubMed  Google Scholar 

  48. Vachon CM, Scott CG, Fasching PA, Hall P, Tamimi RM, Li J, et al. Common breast cancer susceptibility variants in LSP1 and RAD51L1 are associated with mammographic density measures that predict breast cancer risk. Cancer Epidemiol Prevent Biomark. 2012;21(7):1156–66.

    Article  CAS  Google Scholar 

  49. Keller BM, McCarthy AM, Chen J, Armstrong K, Conant EF, Domchek SM, et al. Associations between breast density and a panel of single nucleotide polymorphisms linked to breast cancer risk: a cohort study with digital mammography. BMC Cancer. 2015;15(1):1–12.

    Article  Google Scholar 

  50. Fernandez-Navarro P, Pita G, Santamariña C, Moreno MP, Vidal C, Miranda-García J, et al. Association analysis between breast cancer genetic variants and mammographic density in a large population-based study (determinants of density in Mammographies in Spain) identifies susceptibility loci in TOX3 gene. Eur J Cancer. 2013;49(2):474–81.

    Article  CAS  PubMed  Google Scholar 

  51. Montgomery Hays B, Hudson T. 166 - Endometriosis. In: Pizzorno JE, Murray MT, editors. Textbook of Natural Medicine. 5th ed. St. Louis (MO): Churchill Livingstone; 2020. p. 1287- 95.e3.

    Chapter  Google Scholar 

  52. Samavat H, Kurzer MS. Estrogen metabolism and breast cancer. Cancer Lett. 2015. https://doi.org/10.1016/j.canlet.2014.04.018.

    Article  PubMed  Google Scholar 

  53. van der Geer P. Signal Transduction. In: Maloy S, Hughes K, editors. Brenner’s Encyclopedia of Genetics. 2nd ed. San Diego: Academic Press; 2013. p. 436–9.

    Chapter  Google Scholar 

  54. Ortega MA, Fraile-Martínez O, Asúnsolo Á, Buján J, García-Honduvilla N, Coca S. Signal transduction pathways in breast cancer: the important role of PI3K/Akt/mTOR. J Oncol. 2020. https://doi.org/10.1155/2020/9258396.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554.

    Article  CAS  PubMed  Google Scholar 

  56. Hoxhaj G, Dissanayake K, MacKintosh C. Effect of IRS4 levels on PI 3-kinase signalling. PLoS ONE. 2013;8(9):e73327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huh SJ, Oh H, Peterson MA, Almendro V, Hu R, Bowden M, et al. The proliferative activity of mammary epithelial cells in normal tissue predicts breast cancer risk in premenopausal women. Can Res. 2016;76(7):1926–34.

    Article  CAS  Google Scholar 

  58. Clevenger CV, Chang W-P, Ngo W, Pasha T, Montone KT, Tomaszewski JE. Expression of prolactin and prolactin receptor in human breast carcinoma. Evidence for an autocrine/paracrine loop. The Am J Pathol. 1995;146(3):695.

    CAS  PubMed  Google Scholar 

  59. Gellersen B, Kempf R, Telgmann R, DiMattia GE. Nonpituitary human prolactin gene transcription is independent of Pit-1 and differentially controlled in lymphocytes and in endometrial stroma. Mol Endocrinol. 1994;8(3):356–73.

    CAS  PubMed  Google Scholar 

  60. Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev Dev Biol. 2012;1(4):533–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Boyd N, Stone J, Martin L, Jong R, Fishell E, Yaffe M, et al. The association of breast mitogens with mammographic densities. Br J Cancer. 2002;87(8):876–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Clevenger CV, Furth PA, Hankinson SE, Schuler LA. The role of prolactin in mammary carcinoma. Endocr Rev. 2003;24(1):1–27.

    Article  CAS  PubMed  Google Scholar 

  63. Lane MD. Adipogenesis. In: Lennarz WJ, Lane MD, editors. Encyclopedia of biological chemistry. 2nd ed. Waltham: Academic Press; 2013. p. 52–6.

    Chapter  Google Scholar 

  64. Trichopoulos D, Lagiou P, Adami H-O. Towards an integrated model for breast cancer etiology: The crucial role of the number of mammary tissue-specific stem cells. Breast Cancer Res. 2004;7(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pettersson A, Tamimi RM. Breast fat and breast cancer. Breast Cancer Res Treat. 2012;135(1):321–3.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Santander AM, Lopez-Ocejo O, Casas O, Agostini T, Sanchez L, Lamas-Basulto E, et al. Paracrine Interactions between adipocytes and tumor cells recruit and modify macrophages to the mammary tumor microenvironment: the role of obesity and inflammation in breast adipose tissue. Cancers. 2015;7(1):143–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shpakov A, Pertseva M. Structural and functional characterization of insulin receptor substrate proteins and the molecular mechanisms of their interaction with insulin superfamily tyrosine kinase receptors and effector proteins. Membr Cell Biol. 2000;13(4):455–84.

    CAS  PubMed  Google Scholar 

  68. Zhang H, Wang A, Ma H, Xu Y. Association between insulin receptor substrate 1 Gly972Arg polymorphism and cancer risk. Tumor Biology. 2013;34(5):2929–36.

    Article  CAS  PubMed  Google Scholar 

  69. Byrne C, Colditz GA, Willett WC, Speizer FE, Pollak M, Hankinson SE. Plasma insulin-like growth factor (IGF) I, IGF-binding protein 3, and mammographic density. Cancer Res. 2000;60(14):3744–8.

    CAS  PubMed  Google Scholar 

  70. Tamimi RM, Cox DG, Kraft P, Pollak MN, Haiman CA, Cheng I, et al. Common genetic variation in IGF1, IGFBP-1, and IGFBP-3 in relation to mammographic density: A cross-sectional study. Breast Cancer Res. 2007. https://doi.org/10.1186/bcr1655.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Surmacz E. Function of the IGF-I receptor in breast cancer. J Mammary Gland Biol Neoplasia. 2000;5(1):95–105.

    Article  CAS  PubMed  Google Scholar 

  72. Brisken C, Park S, Vass T, Lydon JP, O’Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci. 1998;95(9):5076–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Azeez JM, Vini R, Remadevi V, Surendran A, Jaleel A, Santhosh Kumar T, et al. VDAC1 and SERCA3 mediate progesterone-triggered Ca2+ signaling in breast cancer cells. J Proteome Res. 2018;17(1):698–709.

    Article  CAS  PubMed  Google Scholar 

  74. Akinjiyan FA, Han Y, Luo J, Toriola AT. Does circulating progesterone mediate the associations of single nucleotide polymorphisms in progesterone receptor (PGR)-related genes with mammographic breast density in premenopausal women? Discover Oncology. 2021;12(1):1–14.

    Article  Google Scholar 

  75. Haslam SZ. Experimental mouse model of hormonal therapy effects on the postmenopausal mammary gland. Breast Dis. 2006;24(1):71–8.

    Article  Google Scholar 

  76. Chlebowski RT, Rohan TE, Manson JE, Aragaki AK, Kaunitz A, Stefanick ML, et al. Breast cancer after use of estrogen plus progestin and estrogen alone: analyses of data from 2 women’s health initiative randomized clinical trials. JAMA Oncol. 2015;1(3):296–305.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lillie EO, Bernstein L, Ingles SA, Gauderman WJ, Rivas GE, Gagalang V, et al. Polymorphism in the androgen receptor and mammographic density in women taking and not taking estrogen and progestin therapy. Can Res. 2004;64(4):1237–41.

    Article  CAS  Google Scholar 

  78. Hong C-C, Thompson HJ, Jiang C, Hammond GL, Tritchler D, Yaffe M, et al. Association between the T27C polymorphism in the cytochrome P450 c17α (CYP17) gene and risk factors for breast cancer. Breast Cancer Res Treat. 2004;88(3):217–30.

    Article  CAS  PubMed  Google Scholar 

  79. Lai JH, Vesprini D, Zhang W, Yaffe MJ, Pollak M, Narod SA. A polymorphic locus in the promoter region of the IGFBP3 gene is related to mammographic breast density. Cancer Epidemiol Prevent Biomark. 2004;13(4):573–82.

    Article  CAS  Google Scholar 

  80. Mulhall C, Hegele RA, Cao H, Tritchler D, Yaffe M, Boyd NF. Pituitary growth hormone and growth hormone-releasing hormone receptor genes and associations with mammographic measures and serum growth hormone. Cancer Epidemiol Prevent Biomark. 2005;14(11):2648–54.

    Article  CAS  Google Scholar 

  81. van Duijnhoven FJ, Bezemer ID, Peeters PH, Roest M, Uitterlinden AG, Grobbee DE, et al. Polymorphisms in the estrogen receptor α gene and mammographic density. Cancer Epidemiol Prevent Biomark. 2005;14(11):2655–60.

    Article  Google Scholar 

  82. dos Santos SI, Johnson N, De Stavola B, Torres-Mejía G, Fletcher O, Allen DS, et al. The insulin-like growth factor system and mammographic features in premenopausal and postmenopausal women. Cancer Epidemiol Prevent Biomark. 2006;15(3):449–55.

    Article  Google Scholar 

  83. van Duijnhoven FJ, Peeters PH, Warren RM, Bingham SA, Uitterlinden AG, van Noord PA, et al. Influence of estrogen receptor α and progesterone receptor polymorphisms on the effects of hormone therapy on mammographic density. Cancer Epidemiol Prevent Biomark. 2006;15(3):462–7.

    Article  Google Scholar 

  84. Warren R, Skinner J, Sala E, Denton E, Dowsett M, Folkerd E, et al. Associations among mammographic density, circulating sex hormones, and polymorphisms in sex hormone metabolism genes in postmenopausal women. Cancer Epidemiol Prevent Biomark. 2006;15(8):1502–8.

    Article  CAS  Google Scholar 

  85. Ramos EHdM, Kemp C, Silva IDCGd. Associação entre os polimorfismos HaeIII e MspI do gene para o receptor alfa de estrogênio e densidade mamográfica em mulheres após a menopausa. Rev Bras Ginecol Obstet. 2006;28:581–9.

    Article  Google Scholar 

  86. Olson JE, Ma CX, Pelleymounter LL, Schaid DJ, Pankratz VS, Vierkant RA, et al. A comprehensive examination of CYP19 variation and breast density. Cancer Epidemiol Prevent Biomark. 2007;16(3):623–5.

    Article  CAS  Google Scholar 

  87. Lee E, Haiman CA, Ma H, Van Den Berg D, Bernstein L, Ursin G. The role of established breast cancer susceptibility loci in mammographic density in young women. Cancer Epidemiology and Prevention Biomarkers. 2008;17(1):258–60.

    Article  CAS  Google Scholar 

  88. Diorio C, Sinotte M, Brisson J, Bérubé S, Pollak M. Vitamin D pathway polymorphisms in relation to mammographic breast density. Cancer Epidemiology and Prevention Biomarkers. 2008;17(9):2505–8.

    Article  CAS  Google Scholar 

  89. Diorio C, Brisson J, Bérubé S, Pollak M. Genetic polymorphisms involved in insulin-like growth factor (IGF) pathway in relation to mammographic breast density and IGF levels. Cancer Epidemiol Prevent Biomark. 2008;17(4):880–8.

    Article  CAS  Google Scholar 

  90. Tamimi RM, Cox D, Kraft P, Colditz GA, Hankinson SE, Hunter DJ. Breast cancer susceptibility loci and mammographic density. Breast Cancer Res. 2008;10(4):1–9.

    Article  Google Scholar 

  91. Verheus M, McKay JD, Kaaks R, Canzian F, Biessy C, Johansson M, et al. Common genetic variation in the IGF-1 gene, serum IGF-I levels and breast density. Breast Cancer Res Treat. 2008;112(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  92. Monsees GM, Tamimi RM, Kraft P. Genome-wide association scans for secondary traits using case-control samples. Genet Epidemiol. 2009;33(8):717–28.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kotsopoulos J, Tworoger SS, DeVivo I, Hankinson SE, Hunter DJ, Willett WC, et al. + 331G/A variant in the progesterone receptor gene, postmenopausal hormone use and risk of breast cancer. Int J Cancer. 2009;125(7):1685–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fehringer G, Ozcelik H, Knight JA, Paterson AD, Boyd NF. Association between IGF1 CA microsatellites and mammographic density, anthropometric measures, and circulating IGF-I levels in premenopausal Caucasian women. Breast Cancer Res Treat. 2009;116(2):413–23.

    Article  CAS  PubMed  Google Scholar 

  95. Crandall CJ, Sehl ME, Crawford SL, Gold EB, Habel LA, Butler LM, et al. Sex steroid metabolism polymorphisms and mammographic density in pre-and early perimenopausal women. Breast Cancer Res. 2009;11(4):1–15.

    Article  Google Scholar 

  96. Woolcott CG, Maskarinec G, Haiman CA, Verheus M, Pagano IS, Le Marchand L, et al. Association between breast cancer susceptibility loci and mammographic density: the Multiethnic Cohort. Breast Cancer Res. 2009;11(1):1–7.

    Article  Google Scholar 

  97. Chambô D, Kemp C, Costa A, Souza N, Guerreiro da Silva I. Polymorphism in CYP17, GSTM1 and the progesterone receptor genes and its relationship with mammographic density. Brazilian J Med Biol Res. 2009;42(4):323–9.

    Article  Google Scholar 

  98. de Moura RE, Martinelli S, Silva I, Nazário A, Facina G, Costa A, et al. Association between estrogen receptor gene polymorphisms and breast density in postmenopausal women. Climacteric. 2009;12(6):490–501.

    Article  Google Scholar 

  99. Biong M, Gram IT, Brill I, Johansen F, Solvang HK, Alnaes GIG, et al. Genotypes and haplotypes in the insulin-like growth factors, their receptors and binding proteins in relation to plasma metabolic levels and mammographic density. BMC Med Genomics. 2010;3(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Taverne CW, Verheus M, McKay JD, Kaaks R, Canzian F, Grobbee DE, et al. Common genetic variation of insulin-like growth factor-binding protein 1 (IGFBP-1), IGFBP-3, and acid labile subunit in relation to serum IGF-I levels and mammographic density. Breast Cancer Res Treat. 2010;123(3):843–55.

    Article  CAS  PubMed  Google Scholar 

  101. Yong M, Schwartz SM, Atkinson C, Makar KW, Thomas SS, Newton KM, et al. Associations between polymorphisms in glucuronidation and sulfation enzymes and mammographic breast density in premenopausal women in the United States. Cancer Epidemiol Prev Biomark. 2010;19(2):537–46.

    Article  CAS  Google Scholar 

  102. Dumas I, Diorio C. Polymorphisms in genes involved in the estrogen pathway and mammographic density. BMC Cancer. 2010;10(1):1–10.

    Article  Google Scholar 

  103. Li J, Eriksson L, Humphreys K, Czene K, Liu J, Tamimi RM, et al. Genetic variation in the estrogen metabolic pathway and mammographic density as an intermediate phenotype of breast cancer. Breast Cancer Res. 2010;12(2):1–9.

    Article  CAS  Google Scholar 

  104. Giacomazzi J, Aguiar E, Palmero EI, Schmidt AV, Skonieski G, Duarte Filho D, et al. Prevalence of the STK15 F31I polymorphism and its relationship with mammographic density. Braz J Med Biol Res. 2011;44:291–6.

    Article  CAS  PubMed  Google Scholar 

  105. Giacomazzi J, Aguiar E, Palmero EI, Schmidt AV, Skonieski G, Bock H, et al. Prevalence of ERα-397 PvuII C/T, ERα-351 XbaI A/G and PGR PROGINS polymorphisms in Brazilian breast cancer-unaffected women. Braz J Med Biol Res. 2012;45:891–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee E, Ingles SA, Van Den Berg D, Wang W, LaVallee C, Huang M-H, et al. Progestogen levels, progesterone receptor gene polymorphisms, and mammographic density changes: results from the postmenopausal estrogen/progestin interventions mammographic density study (PEPI-MDS). Menopause (New York, NY). 2012;19(3):302.

    Article  Google Scholar 

  107. Ellingjord-Dale M, Lee E, Couto E, Ozhand A, Qureshi SA, Hofvind S, et al. Polymorphisms in hormone metabolism and growth factor genes and mammographic density in Norwegian postmenopausal hormone therapy users and non-users. Breast Cancer Res. 2012;14(5):1–10.

    Article  Google Scholar 

  108. Aguiar ESd, Giacomazzi J, Schmidt AV, Bock H, Saraiva-Pereira ML, Schuler-Faccini L, et al. GSTM1, GSTT1, and GSTP1 polymorphisms, breast cancer risk factors and mammographic density in women submitted to breast cancer screening. Rev Bras Epidemiol. 2012;15:246–55.

    Article  PubMed  Google Scholar 

  109. De Bruin MA, Kwong A, Goldstein BA, Lipson JA, Ikeda DM, McPherson L, et al. Breast cancer risk factors differ between Asian and white women with BRCA1/2 mutations. Fam Cancer. 2012;11(3):429–39.

    Article  PubMed  Google Scholar 

  110. Lee E, Hsu C, Van Den Berg D, Ursin G, Koh WP, Yuan JM, et al. Genetic variation in peroxisome proliferator-activated receptor gamma, soy, and mammographic density in Singapore Chinese women. Cancer Epidemiol Biomark Prev. 2012;21(4):635–44.

    Article  CAS  Google Scholar 

  111. Vachon CM, Li JM, Scott CG, Hall P, Czene K, Wang XS, et al. No evidence for association of inherited variation in genes involved in mitosis and percent mammographic density. Breast Cancer Res. 2012. https://doi.org/10.1186/bcr3088.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lee E, Su YC, Lewinger JP, Hsu C, Van Den Berg D, Ursin G, et al. Hormone metabolism genes and mammographic density in singapore chinese women. Cancer Epidemiol Biomark Prev. 2013;22(5):984–6.

    Article  CAS  Google Scholar 

  113. Henry NL, Chan HP, Dantzer J, Goswami CP, Li L, Skaar TC, et al. Aromatase inhibitor-induced modulation of breast density: clinical and genetic effects. Br J Cancer. 2013;109(9):2331–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Baldisserotto FDG, Elias S, Silva IDCG, Nazario ACP. The relationship between estrogen receptor gene polymorphism and mammographic density in postmenopausal women. Climacteric. 2013;16(3):369–80.

    Article  CAS  PubMed  Google Scholar 

  115. Ozhand A, Lee E, Wu AH, Ellingjord-Dale M, Akslen LA, McKean-Cowdin R, et al. Variation in inflammatory cytokine/growth-factor genes and mammographic density in premenopausal women aged 50–55. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0065313.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Dallal C, Garte S, Ragin C, Chen JY, Lloyd S, Modugno F, et al. Plasma leptin levels, LEPR Q223R polymorphism and mammographic breast density: a cross-sectional study. Int J Biol Markers. 2013;28(2):161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Souza MA, da Fonseca AM, Bagnoli VR, de Barros N, Hortense VHS, Franzolin SOB, et al. Polymorphisms in the estrogen receptor alpha gene and mammographic density result study in Brazilian women. Journal of Cancer Science and Therapy. 2013;5(12):446–51.

    Article  Google Scholar 

  118. Lee E, Van Den Berg D, Hsu C, Ursin G, Koh WP, Yuan JM, et al. Genetic variation in transforming growth factor beta 1 and mammographic density in Singapore Chinese women. Can Res. 2013;73(6):1876–82.

    Article  CAS  Google Scholar 

  119. Li H, Giger ML, Sun C, Ponsukcharoen U, Huo DZ, Lan L, et al. Pilot study demonstrating potential association between breast cancer image-based risk phenotypes and genomic biomarkers. Med Phys. 2014;10(1118/1):4865811.

    Google Scholar 

  120. Souza MA, da Fonseca AM, Bagnoli VR, de Barros N, Hortense VHS, Carvalho KC, et al. Clinical factors associated with high mammographic density in postmenopausal women and their relationship with dinucleotide Gtn repeat polymorphism in the estrogen receptor alpha gene. J Cancer Sci Therapy. 2014;6(5):142–7.

    CAS  Google Scholar 

  121. Rinaldi S, Biessy C, Hernandez M, Lesueur F, Dos-Santos-Silva I, Rice MS, et al. Circulating concentrations of insulin-like growth factor-I, insulin-like growth factor-binding protein-3, genetic polymorphisms and mammographic density in premenopausal Mexican women: Results from the ESMaestras cohort. Int J Cancer. 2014;134(6):1436–44.

    Article  CAS  PubMed  Google Scholar 

  122. Dorairaj JJ, Salzman DW, Wall D, Rounds T, Preskill C, Sullivan CAW, et al. A germline mutation in the BRCA1 3’UTR predicts Stage IV breast cancer. BMC Cancer. 2014. https://doi.org/10.1186/1471-2407-14-421.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ellingjord-Dale M, Grotmol T, Lee E, Van Den Berg DJ, Hofvind S, Couto E, et al. Breast cancer susceptibility variants and mammographic density phenotypes in norwegian postmenopausal women. Cancer Epidemiol Biomark Prev. 2014;23(9):1752–63.

    Article  Google Scholar 

  124. Flote VG, Furberg AS, McTiernan A, Frydenberg H, Ursin G, Iversen A, et al. Gene variations in oestrogen pathways, CYP19A1, daily 17 beta-estradiol and mammographic density phenotypes in premenopausal women. Breast Cancer Res. 2014. https://doi.org/10.1186/s13058-014-0499-2.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Brand JS, Czene K, Shepherd JA, Leifland K, Heddson B, Sundbom A, et al. Automated measurement of volumetric mammographic density: a tool for widespread breast cancer risk assessment. Cancer Epidemiol Biomark Prev. 2014;23(9):1764–72.

    Article  Google Scholar 

  126. Cheddad A, Czene K, Eriksson M, Li JM, Easton D, Hall P, et al. Area and volumetric density estimation in processed full-field digital mammograms for risk assessment of breast cancer. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0110690.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Darabi H, McCue K, Beesley J, Michailidou K, Nord S, Kar S, et al. Polymorphisms in a putative enhancer at the 10q21.2 breast cancer risk locus regulate NRBF2 expression. Am J Human Genetics. 2015;97(1):22–34.

    Article  CAS  Google Scholar 

  128. Cheddad A, Czene K, Hall P, Humphreys K. Pectoral muscle attenuation as a marker for breast cancer risk in full-field digital mammography. Cancer Epidemiol Biomark Prev. 2015;24(6):985–91.

    Article  Google Scholar 

  129. Keller BM, McCarthy AM, Chen J, Armstrong K, Conant EF, Domchek SM, et al. Associations between breast density and a panel of single nucleotide polymorphisms linked to breast cancer risk: a cohort study with digital mammography. BMC Cancer. 2015. https://doi.org/10.1186/s12885-015-1159-3.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lee CPL, Choi H, Soo KC, Tan MH, Chay WY, Chia KS, et al. Mammographic breast density and common genetic variants in breast cancer risk prediction. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0136650.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Stone J, Thompson DJ, Silva ID, Scott C, Tamimi RM, Lindstrom S, et al. Novel associations between common breast cancer susceptibility variants and risk-predicting mammographic density measures. Can Res. 2015;75(12):2457–67.

    Article  CAS  Google Scholar 

  132. Fjeldheim FN, Frydenberg H, Flote VG, McTiernan A, Furberg AS, Ellison PT, et al. Polymorphisms in the estrogen receptor alpha gene (ESR1), daily cycling estrogen and mammographic density phenotypes. BMC Cancer. 2016. https://doi.org/10.1186/s12885-016-2804-1.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Chen Y, Shi CY, Guo QY. TNRC9 rs12443621 and FGFR2 rs2981582 polymorphisms and breast cancer risk. World J Surg Oncol. 2016. https://doi.org/10.1186/s12957-016-0795-7.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Mariapun S, Ho WK, Kang PCE, Li JM, Lindstrom S, Yip CH, et al. Variants in 6q251 Are associated with mammographic density in Malaysian Chinese women. Cancer Epidemiol Biomark Prevent. 2016;25(2):327–33.

    Article  Google Scholar 

  135. Dunning AM, Michailidou K, Kuchenbaecker KB, Thompson D, French JD, Beesley J, et al. Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nat Genet. 2016;48(4):374–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rohani WTW, Athirah SA, Nasriah A, Mohaslida M, Murniwati T, Norhasiza MJ, et al. Study of association of TGF-beta 1 Polymorphism with Breast Density in a Tertiary Medical Center of Malaysia. Medicine and Health-Kuala Lumpur. 2017;12(2):312–20.

    Google Scholar 

  137. Borgquist S, Rosendahl AH, Czene K, Bhoo-Pathy N, Dorkhan M, Hall P, et al. Long-term exposure to insulin and volumetric mammographic density: observational and genetic associations in the karma study. Breast Cancer Res. 2018. https://doi.org/10.1186/s13058-018-1026-7.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Dofara SG, Chang SL, Diorio C. Association between the polymorphisms in MMP-2 and MMP-9 with adiposity and mammographic features. Breast Cancer Res Treat. 2020;182(1):169–79.

    Article  CAS  PubMed  Google Scholar 

  139. Kawada K, Taira N, Mizoo T, Suzuki Y, Kajiwara Y, Hatono M, et al. Relationships of physical and breast cancer phenotypes with three single-nucleotide polymorphisms (rs2046210, rs3757318, and rs3803662) associated with breast cancer risk in Japanese women. Breast Cancer. 2020. https://doi.org/10.1007/s12282-020-01185-x.

    Article  PubMed  Google Scholar 

  140. Smolarz B, Wójcik L, Romanowicz H. Single nucleotide polymorphisms of insulin-like growth factor gene and mammographic breast density. Przeglad Menopauzalny. 2021;19(4):160–70.

    PubMed Central  Google Scholar 

  141. Brentnall AR, van Veen EM, Harkness EF, Rafiq S, Byers H, Astley SM, et al. A case–control evaluation of 143 single nucleotide polymorphisms for breast cancer risk stratification with classical factors and mammographic density. Int J Cancer. 2020;146(8):2122–9.

    Article  CAS  PubMed  Google Scholar 

  142. Lindstrom S, Vachon CM, Li JM, Varghese J, Thompson D, Warren R, et al. Common variants in ZNF365 are associated with both mammographic density and breast cancer risk. Nat Genet. 2011;43(3):185–7.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Stevens KN, Lindstrom S, Scott CG, Thompson D, Sellers TA, Wang XS, et al. Identification of a novel percent mammographic density locus at 12q24. Hum Mol Genet. 2012;21(14):3299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Brand JS, Humphreys K, Thompson DJ, Li JM, Eriksson M, Hall P, et al. Volumetric mammographic density: heritability and association with breast cancer susceptibility loci. Jnci-J National Cancer Inst. 2014. https://doi.org/10.1093/jnci/dju334.

    Article  Google Scholar 

  145. Lindstrom S, Thompson DJ, Paterson AD, Li JM, Gierach GL, Scott C, et al. Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk. Nat Commun. 2014. https://doi.org/10.1038/ncomms6303.

    Article  PubMed  Google Scholar 

  146. Fejerman L, Ahmadiyeh N, Hu D, Huntsman S, Beckman KB, Caswell JL, et al. Genome-wide association study of breast cancer in Latinas identifies novel protective variants on 6q25. Nat Commun. 2014;5(1):5260.

    Article  CAS  PubMed  Google Scholar 

  147. Atkinson EJ, Eckel-Passow JE, Wang A, Greenberg AJ, Scott CG, Pankratz VS, et al. The association of copy number variation and percent mammographic density. BMC Res Notes. 2015. https://doi.org/10.1186/s13104-015-1212-y.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Brand JS, Li JM, Humphreys K, Karlsson R, Eriksson M, Ivansson E, et al. Identification of two novel mammographic density loci at 6Q251. Breast Cancer Res. 2015. https://doi.org/10.1186/s13058-015-0591-2.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Fernandez-Navarro P, González-Neira A, Pita G, Díaz-Uriarte R, Tais Moreno L, Ederra M, et al. Genome wide association study identifies a novel putative mammographic density locus at 1q12-q21. Int J Cancer. 2015;136(10):2427–36.

    Article  CAS  PubMed  Google Scholar 

  150. Brand JS, Humphreys K, Li J, Karlsson R, Hall P, Czene K. Common genetic variation and novel loci associated with volumetric mammographic density. Breast Cancer Res. 2018. https://doi.org/10.1186/s13058-018-0954-6.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Sieh W, Rothstein JH, Klein RJ, Alexeeff SE, Sakoda LC, Jorgenson E, et al. Identification of 31 loci for mammographic density phenotypes and their associations with breast cancer risk. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-18883-x.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Chen H, Fan S, Stone J, Thompson DJ, Douglas J, Li S, et al. Genome-wide and transcriptome-wide association studies of mammographic density phenotypes reveal novel loci. Breast Cancer Res. 2022;24(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

Design the research: AKS, Data collection: AKS, MA and MH, Statistical analysis: AKS, and MA, Manuscript draft: AKS, MA, FA, and AP. All authors helped edit and approve the final version of this manuscript for submission. They also participated in the finalization of manuscript and approved the final draft.

Corresponding authors

Correspondence to Alireza Pasdar or Fahimeh Afzaljavan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not Applicable.

Consent for publication

Not Applicable.

Consent to participate

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 706 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorshid Shamshiri, A., Alidoust, M., Hemmati Nokandei, M. et al. Genetic architecture of mammographic density as a risk factor for breast cancer: a systematic review. Clin Transl Oncol 25, 1729–1747 (2023). https://doi.org/10.1007/s12094-022-03071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03071-8

Keywords

Navigation