Skip to main content

Advertisement

Log in

CRISPR-Cas9-mediated gene therapy in lung cancer

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

As the largest cause of cancer-related deaths worldwide, pulmonary cancer is the most common form of the disease. Several genetic, epigenetic, and environmental factors come into play during the multi-step mechanism of tumorigenesis. The heterogeneity that makes discovering successful therapeutics for pulmonary cancer problematic is significantly influenced by the epigenetic landscape, including DNA methylation, chromatin architecture, histone modifications, and noncoding RNA control. Clinical activity of epigenetic-targeted medicines has been reported in hematological tumors, and these compounds may also have therapeutic effects in solid tumors. Over the course of the past few years, some researchers have successfully modified the expression of genes in cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) technique. The utilization of this technology allows for the induction of site-specific mutagenesis, epigenetic alterations, and the regulation of gene expression. This study will present an overview of the primary epigenetic alterations seen in pulmonary cancer, as well as a summary of therapeutic implications for targeting epigenetics in the management of pulmonary cancer, with a particular emphasis on the technique known as CRISPR/Cas9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Raso MG, Bota-Rabassedas N, Wistuba II. Pathology and Classification of SCLC. Cancers. 2021;13(4):820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tabib A, Khorgami MR, Meraji M, Omidi N, Mirmesdagh Y. Accuracy of doppler-derived indices in predicting pulmonary vascular resistance in children with pulmonary hypertension secondary to congenital heart disease with left-to-right shunting. Pediatr Cardiol. 2014;35(3):521–9.

    Article  PubMed  Google Scholar 

  3. Inamura K. Update on immunohistochemistry for the diagnosis of lung cancer. Cancers. 2018;10(3):72.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu Z, Su W, Ao J, Wang M, Jiang Q, He J, et al. Instant diagnosis of gastroscopic biopsy via deep-learned single-shot femtosecond stimulated Raman histology. Nat Commun. 2022;13(1):1–12.

    Google Scholar 

  5. Grossman DC, Curry SJ, Owens DK, Barry MJ, Davidson KW, Doubeni CA, et al. Screening for adolescent idiopathic scoliosis: US preventive services task force recommendation statement. JAMA. 2018;319(2):165–72.

    Article  PubMed  Google Scholar 

  6. Duan C, Deng H, Xiao S, Xie J, Li H, Zhao X, et al. Accelerate gas diffusion-weighted MRI for lung morphometry with deep learning. Eur Radiol. 2022;32(1):702–13.

    Article  PubMed  Google Scholar 

  7. Kadara H, Wistuba II. Field cancerization in non–small cell lung cancer: implications in disease pathogenesis. Proc Am Thorac Soc. 2012;9(2):38–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Su Y, Fang HB, Jiang F. An epigenetic classifier for early stage lung cancer. Clin Epigenetics. 2018;10(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li H, Zhao X, Wang Y, Lou X, Chen S, Deng H, et al. Damaged lung gas exchange function of discharged COVID-19 patients detected by hyperpolarized 129Xe MRI. Sci Adv. 2021;7(1):eabc8180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jabbour SK, Lee KH, Frost N, Breder V, Kowalski DM, Pollock T, et al. Pembrolizumab plus concurrent chemoradiation therapy in patients with unresectable, locally advanced, stage III non-small cell lung cancer: the phase 2 keynote-799 nonrandomized trial. JAMA Oncol. 2021;7(9):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vansteenkiste J, Crino L, Dooms C, Douillard J-Y, Faivre-Finn C, Lim E, et al. 2nd ESMO consensus conference on lung cancer early-stage non-small-cell lung cancer consensus on diagnosis treatment and follow-up. Ann Oncol. 2014;25(8):1462–74.

    Article  CAS  PubMed  Google Scholar 

  12. Hiddinga BI, Pauwels P, Janssens A, van Meerbeeck JP. O6-methylguanine-DNA methyltransferase (MGMT): a drugable target in lung cancer? Lung Cancer. 2017;107:91–9.

    Article  PubMed  Google Scholar 

  13. Mehta A, Dobersch S, Romero-Olmedo AJ, Barreto G. Epigenetics in lung cancer diagnosis and therapy. Cancer Metastasis Rev. 2015;34(2):229–41.

    Article  CAS  PubMed  Google Scholar 

  14. Iranshahi N, Zafari P, Yari KH, Alizadeh E. The most common genes involved in epigenetics modifications among Iranian patients with breast cancer: a systematic review. Cell Mol Biol. 2016;62(12):116–22.

    CAS  PubMed  Google Scholar 

  15. Liu S, Fabbri M, Gitlitz B, Laird-Offringa I. Epigenetic therapy in lung cancer. Front Oncol. 2013. https://doi.org/10.3389/fonc.2013.00135.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu H, Gao Y, Vafaei S, Gu X, Zhong X. The prognostic value of plasma cell-free DNA concentration in the prostate cancer: a systematic review and meta-analysis. Front Oncol. 2021;11: 599602.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Yao C-F, Xu F-J, Qu Y-Y, Li J-T, Lin Y, et al. APC/CCDH1 synchronizes ribose-5-phosphate levels and DNA synthesis to cell cycle progression. Nat Commun. 2019;10(1):1–16.

    Google Scholar 

  18. Yang X, Lay F, Han H, Jones PA. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol Sci. 2010;31(11):536–46.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Azadeh H, Alizadeh-Navaei R, Rezaiemanesh A, Rajabinejad M. Immune-related adverse events (irAEs) in ankylosing spondylitis (AS) patients treated with interleukin (IL)-17 inhibitors: a systematic review and meta-analysis. Inflammopharmacology. 2022;30(2):435–51.

    Article  CAS  PubMed  Google Scholar 

  20. Coiffier B, Pro B, Prince HM, Foss F, Sokol L, Greenwood M, et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol. 2012;30(6):631–6.

    Article  CAS  PubMed  Google Scholar 

  21. Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie. 2015;117:119–28.

    Article  CAS  PubMed  Google Scholar 

  22. Zou M, Yang Z, Fan Y, Gong L, Han Z, Ji L, et al. Gut microbiota on admission as predictive biomarker for acute necrotizing pancreatitis. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.988326.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vafaei S, Mirnejad R, Amirmozafari N. Determining the patterns of antimicrobial susceptibility and the distribution of blaCTX-M genes in strains of Acinetobacter Baumannii isolated from clinical samples. J Isfahan Med Sch. 2013;31(252):1443–51.

    Google Scholar 

  24. Rivera GA, Wakelee H. Lung cancer in never smokers. Lung Cancer Personal Med. 2016;893:43–57.

    Google Scholar 

  25. Zafari P, Yari K, Mostafaei S, Iranshahi N, Assar S, Fekri A, et al. Analysis of Helios gene expression and Foxp3 TSDR methylation in the newly diagnosed Rheumatoid Arthritis patients. Immunol Invest. 2018;47(6):632–42.

    Article  CAS  PubMed  Google Scholar 

  26. Turner BM. Epigenetic responses to environmental change and their evolutionary implications. Phil Trans R Soc B. 2009;364(1534):3403–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iranshahi N, Assar S, Amiri SM, Zafari P, Fekri A, Taghadosi M. Decreased gene expression of epstein-barr virus-induced gene 3 (EBI-3) may contribute to the pathogenesis of rheumatoid arthritis. Immunol Invest. 2019;48(4):367–77.

    Article  CAS  PubMed  Google Scholar 

  28. Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol. 2016;8(9): a019505.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modificationsthe role of altered epigenetics in cancer development. Mol Cancer Ther. 2009;8(6):1409–20.

    Article  CAS  PubMed  Google Scholar 

  30. Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1(5):391–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Samimi Z, Kardideh B, Zafari P, Bahrehmand F, Roghani SA, Taghadosi M. The impaired gene expression of adenosine monophosphate-activated kinase (AMPK), a key metabolic enzyme in leukocytes of newly diagnosed rheumatoid arthritis patients. Mol Biol Rep. 2019;46(6):6353–60.

    Article  CAS  PubMed  Google Scholar 

  32. Shi Y-X, Wang Y, Li X, Zhang W, Zhou H-H, Yin J-Y, et al. Genome-wide DNA methylation profiling reveals novel epigenetic signatures in squamous cell lung cancer. BMC Genomics. 2017;18(1):1–12.

    Article  Google Scholar 

  33. Jia BY, Yang RH, Jiao WJ, Tian KH. Investigation of the effect of P14 promoter aberrant methylation on the biological function of human lung cancer cells. Thoracic Cancer. 2019;10(6):1388–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang Y, Xiao G, Chen Y, Deng Y. LncRNA MALAT1 promotes migration and invasion of non-small-cell lung cancer by targeting miR-206 and activating Akt/mTOR signaling. Anticancer Drugs. 2018;29(8):725–35.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang X, Sai B, Wang F, Wang L, Wang Y, Zheng L, et al. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer. 2019;18(1):1–15.

    Article  Google Scholar 

  36. Wang Y, Yu L, Wang T. MicroRNA-374b inhibits the tumor growth and promotes apoptosis in non-small cell lung cancer tissue through the p38/ERK signaling pathway by targeting JAM-2. J Thorac Dis. 2018;10(9):5489.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shi Y-X, Sheng D-Q, Cheng L, Song X-Y. Current landscape of epigenetics in lung cancer: focus on the mechanism and application. J Oncol. 2019;2019:8107318.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Qu Y-Y, Zhao R, Zhang H-L, Zhou Q, Xu F-J, Zhang X, et al. Inactivation of the AMPK–GATA3–ECHS1 pathway induces fatty acid synthesis that promotes clear cell renal cell carcinoma growth. Cancer Res. 2020;80(2):319–33.

    Article  CAS  PubMed  Google Scholar 

  39. Damiani LA, Yingling CM, Leng S, Romo PE, Nakamura J, Belinsky SA. Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells. Cancer Res. 2008;68(21):9005–14.

    Article  CAS  PubMed  Google Scholar 

  40. Kim H, Kwon YM, Kim JS, Han J, Shim YM, Park J, et al. Elevated mRNA levels of DNA methyltransferase-1 as an independent prognostic factor in primary nonsmall cell lung cancer. Cancer Interdiscip Int J Am Cancer Soc. 2006;107(5):1042–9.

    CAS  Google Scholar 

  41. Vos MD, Ellis CA, Bell A, Birrer MJ, Clark GJ. Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem. 2000;275(46):35669–72.

    Article  CAS  PubMed  Google Scholar 

  42. Shivakumar L, Minna J, Sakamaki T, Pestell R, White MA. The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol. 2002;22(12):4309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Begum S, Brait M, Dasgupta S, Ostrow KL, Zahurak M, Carvalho AL, et al. An epigenetic marker panel for detection of lung cancer using cell-free serum DNABiomarkers in non-small cell lung cancer. Clin Cancer Res. 2011;17(13):4494–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Soejima H, Zhao W, Mukai T. Epigenetic silencing of the MGMT gene in cancer. Biochem Cell Biol. 2005;83(4):429–37.

    Article  CAS  PubMed  Google Scholar 

  45. Wang D, Zhao R, Qu Y-Y, Mei X-Y, Zhang X, Zhou Q, et al. Colonic lysine homocysteinylation induced by high-fat diet suppresses DNA damage repair. Cell Rep. 2018;25(2):398-412.e6.

    Article  CAS  PubMed  Google Scholar 

  46. Wu P-F, Kuo K-T, Kuo L-T, Lin Y-T, Lee W-C, Lu Y-S, et al. O6-Methylguanine-DNA methyltransferase expression and prognostic value in brain metastases of lung cancers. Lung Cancer. 2010;68(3):484–90.

    Article  PubMed  Google Scholar 

  47. Brabender J, Usadel H, Metzger R, Schneider PM, Park J, Salonga D, et al. Quantitative O 6-methylguanine DNA methyltransferase methylation analysis in curatively resected non-small cell lung cancer: associations with clinical outcome. Clin Cancer Res. 2003;9(1):223–7.

    CAS  PubMed  Google Scholar 

  48. Li J, Poi MJ, Tsai M-D. Regulatory mechanisms of tumor suppressor P16INK4A and their relevance to cancer. Biochemistry. 2011;50(25):5566–82.

    Article  CAS  PubMed  Google Scholar 

  49. He X, Zhu Y, Yang L, Wang Z, Wang Z, Feng J, et al. MgFe-LDH nanoparticles: a promising leukemia inhibitory factor replacement for self-renewal and pluripotency maintenance in cultured mouse embryonic stem cells. Adv Sci. 2021;8(9):2003535.

    Article  CAS  Google Scholar 

  50. Feng Y, Li F, Yan J, Guo X, Wang F, Shi H, et al. Pan-cancer analysis and experiments with cell lines reveal that the slightly elevated expression of DLGAP5 is involved in clear cell renal cell carcinoma progression. Life Sci. 2021;287: 120056.

    Article  CAS  PubMed  Google Scholar 

  51. Iwakawa R, Kohno T, Anami Y, Noguchi M, Suzuki K, Matsuno Y, et al. Association of p16 homozygous deletions with clinicopathologic characteristics and EGFR/KRAS/p53 mutations in lung adenocarcinoma. Clin Cancer Res. 2008;14(12):3746–53.

    Article  CAS  PubMed  Google Scholar 

  52. Nuovo GJ, Plaia TW, Belinsky SA, Baylin SB, Herman JG. In situ detection of the hypermethylation-induced inactivation of the p16 gene as an early event in oncogenesis. Proc Natl Acad Sci. 1999;96(22):12754–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang W, Liu W, Li X, Yan J, He W. Turning chiral peptides into a racemic supraparticle to induce the self-degradation of MDM2. J Adv Res. 2022. https://doi.org/10.1016/j.jare.2022.05.009.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xiao P, Chen J-r, Zhou F, Lu C-x, Yang Q, Tao G-h, et al. Methylation of P16 in exhaled breath condensate for diagnosis of non-small cell lung cancer. Lung Cancer. 2014;83(1):56–60.

    Article  PubMed  Google Scholar 

  55. Michie AM, McCaig AM, Nakagawa R, Vukovic M. Death-associated protein kinase (DAPK) and signal transduction: regulation in cancer. FEBS J. 2010;277(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Y, Wu J, Huang G, Xu S. Clinicopathological significance of DAPK promoter methylation in non-small-cell lung cancer: a systematic review and meta-analysis. Cancer Manag Res. 2018;10:6897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schrump DS. Targeting epigenetic mediators of gene expression in thoracic malignancies. Biochim Biophys Acta. 2012;1819(7):836–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Berndsen CE, Denu JM. Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr Opin Struct Biol. 2008;18(6):682–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, et al. Chemical phylogenetics of histone deacetylases. Nat Chem Biol. 2010;6(3):238–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nottke A, Colaiácovo MP, Shi Y. Developmental roles of the histone lysine demethylases. Developmental. 2009;136(6):879–89.

    Article  CAS  Google Scholar 

  62. Ponomarev I. Epigenetic control of gene expression in the alcoholic brain. Alcohol Res: Curr Rev. 2013;35(1):69.

    Google Scholar 

  63. Kim W, Kim R, Park G, Park J-W, Kim J-E. Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation. J Biol Chem. 2012;287(8):5588–99.

    Article  CAS  PubMed  Google Scholar 

  64. Van Den Broeck A, Brambilla E, Moro-Sibilot D, Lantuejoul S, Brambilla C, Eymin B, et al. Loss of histone h4k20 trimethylation occurs in preneoplasia and influences prognosis of non–small cell lung cancer. Clin Cancer Res. 2008;14(22):7237–45.

    Article  PubMed  Google Scholar 

  65. Hosseini A, Minucci S. A comprehensive review of lysine-specific demethylase 1 and its roles in cancer. Epigenomics. 2017;9(8):1123–42.

    Article  CAS  PubMed  Google Scholar 

  66. Mohammad HP, Smitheman KN, Kamat CD, Soong D, Federowicz KE, Van Aller GS, et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell. 2015;28(1):57–69.

    Article  CAS  PubMed  Google Scholar 

  67. Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013;12(11):847–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yavropoulou MP, Poulios C, Michalopoulos N, Gatzou A, Chrisafi S, Mantalovas S, et al. A role for circular non-coding RNAs in the pathogenesis of sporadic parathyroid adenomas and the impact of gender-specific epigenetic regulation. Cells. 2018;8(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rajabinejad M, Asadi G, Ranjbar S, Varmaziar FR, Karimi M, Salari F, et al. The MALAT1-H19/miR-19b-3p axis can be a fingerprint for diabetic neuropathy. Immunol Lett. 2022;245:69–78.

    Article  CAS  PubMed  Google Scholar 

  70. Lu T, Wang Y, Chen D, Liu J, Jiao W. Potential clinical application of lncRNAs in non-small cell lung cancer. Onco Targets Ther. 2018;11:8045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Loewen G, Jayawickramarajah J, Zhuo Y, Shan B. Functions of lncRNA HOTAIR in lung cancer. J Hematol Oncol. 2014;7(1):1–10.

    Article  Google Scholar 

  72. An Y-x, Shang Y-j, Xu Z-w, Zhang Q-c, Wang Z, Xuan W-x, et al. STAT3-induced long noncoding RNA LINC00668 promotes migration and invasion of non-small cell lung cancer via the miR-193a/KLF7 axis. Biomed Pharmacother. 2019;116:109023.

    Article  CAS  PubMed  Google Scholar 

  73. Yang Y, Jiang C, Yang Y, Guo L, Huang J, Liu X, et al. Silencing of LncRNA-HOTAIR decreases drug resistance of non-small cell lung cancer cells by inactivating autophagy via suppressing the phosphorylation of ULK1. Biochem Biophys Res Commun. 2018;497(4):1003–10.

    Article  CAS  PubMed  Google Scholar 

  74. Florczuk M, Szpechcinski A, Chorostowska-Wynimko J. miRNAs as biomarkers and therapeutic targets in non-small cell lung cancer: current perspectives. Target Oncol. 2017;12(2):179–200.

    Article  PubMed  Google Scholar 

  75. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Can Res. 2005;65(21):9628–32.

    Article  CAS  Google Scholar 

  76. Kang S-M, Lee H-J, Cho J-Y. MicroRNA-365 regulates NKX2-1, a key mediator of lung cancer. Cancer Lett. 2013;335(2):487–94.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang X, Liu L, Chen WC, Wang F, Cheng YR, Liu YM, et al. Gestational leucylation suppresses embryonic T-box transcription factor 5 signal and causes congenital heart disease. Adv Sci. 2022;9(15):2201034.

    Article  Google Scholar 

  78. Xi S, Xu H, Shan J, Tao Y, Hong JA, Inchauste S, et al. Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J Clin Investig. 2013;123(3):1241–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Braicu C, Zimta A-A, Harangus A, Iurca I, Irimie A, Coza O, et al. The function of non-coding RNAs in lung cancer tumorigenesis. Cancers. 2019;11(5):605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Di X, Jin X, Li R, Zhao M, Wang K. CircRNAs and lung cancer: biomarkers and master regulators. Life Sci. 2019;220:177–85.

    Article  CAS  PubMed  Google Scholar 

  81. Jiang M-M, Mai Z-T, Wan S-Z, Chi Y-M, Zhang X, Sun B-H, et al. Microarray profiles reveal that circular RNA hsa_circ_0007385 functions as an oncogene in non-small cell lung cancer tumorigenesis. J Cancer Res Clin Oncol. 2018;144(4):667–74.

    Article  CAS  PubMed  Google Scholar 

  82. Franic D, Dobrinic P, Korac P. Key achievements in gene therapy development and its promising progress with gene editing tools (ZFN, TALEN, CRISPR/CAS9). Mol Exp Biol Med. 2019;2(1):1–9.

    Article  Google Scholar 

  83. Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Razeghian E, Nasution MK, Rahman HS, Gardanova ZR, Abdelbasset WK, Aravindhan S, et al. A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Stem Cell Res Ther. 2021;12(1):1–17.

    Article  Google Scholar 

  85. Liu M, Han X, Liu H, Chen D, Li Y, Hu W. The effects of CRISPR-Cas9 knockout of the TGF-β1 gene on antler cartilage cells in vitro. Cell Mol Biol Lett. 2019;24(1):1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167–70.

    Article  CAS  PubMed  Google Scholar 

  87. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pawelczak KS, Gavande NS, VanderVere-Carozza PS, Turchi JJ. Modulating DNA repair pathways to improve precision genome engineering. ACS Chem Biol. 2018;13(2):389–96.

    Article  CAS  PubMed  Google Scholar 

  90. Levin WJ, Casey G, Ramos JC, Arboleda MJ, Reissmann PT, Slamon DJ. Tumor suppressor and immediate early transcription factor genes in non-small cell lung cancer. Chest. 1994;106(6):372S-S376.

    CAS  PubMed  Google Scholar 

  91. Yu X, Wang W. Tumor suppressor microRNA-613 inhibits glioma cell proliferation, invasion and angiogenesis by targeting vascular endothelial growth factor A. Mol Med Rep. 2017;16(5):6729–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu J, Tang B, Tang Y. Allele-specific genome targeting in the development of precision medicine. Theranostics. 2020;10(7):3118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Neri M, Cesario A, Granone P, Dominioni L, Puntoni R, D’Angelillo RM, et al. Prognostic role of K-Ras mutations in non-small cell lung cancer: still an issue for open debate. Lung Cancer. 2006;53(3):393–5.

    Article  PubMed  Google Scholar 

  94. Koo T, Yoon A-R, Cho H-Y, Bae S, Yun C-O, Kim J-S. Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Res. 2017;45(13):7897–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang X, Qu Y-Y, Liu L, Qiao Y-N, Geng H-R, Lin Y, et al. Homocysteine inhibits pro-insulin receptor cleavage and causes insulin resistance via protein cysteine-homocysteinylation. Cell Rep. 2021;37(2): 109821.

    Article  CAS  PubMed  Google Scholar 

  96. Göllner S, Oellerich T, Agrawal-Singh S, Schenk T, Klein H-U, Rohde C, et al. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat Med. 2017;23(1):69–78.

    Article  PubMed  Google Scholar 

  97. Luo J. CRISPR/Cas9: from genome engineering to cancer drug discovery. Trends Cancer. 2016;2(6):313–24.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Shen Y, Chen F, Liang Y. MicroRNA-133a inhibits the proliferation of non-small cell lung cancer by targeting YES1. Oncol Lett. 2019;18(6):6759–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhu H, Lu Q, Lu Q, Shen X, Yu L. Matrine regulates proliferation, apoptosis, cell cycle, migration, and invasion of non-small cell lung cancer cells through the circFUT8/miR-944/YES1 axis. Cancer Manag Res. 2021;13:3429.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Garmendia I, Pajares MJ, Hermida-Prado F, Ajona D, Bértolo C, Sainz C, et al. YES1 drives lung cancer growth and progression and predicts sensitivity to dasatinib. Am J Respir Crit Care Med. 2019;200(7):888–99.

    Article  CAS  PubMed  Google Scholar 

  101. Bilal E, Alexe G, Yao M, Cong L, Kulkarni A, Ginjala V, et al. Identification of the YES1 kinase as a therapeutic target in basal-like breast cancers. Genes Cancer. 2010;1(10):1063–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhou Y, Wang C, Ding J, Chen Y, Sun Y, Cheng Z. miR-133a targets YES1 to reduce cisplatin resistance in ovarian cancer by regulating cell autophagy. Cancer Cell Int. 2022;22(1):1–13.

    Article  CAS  Google Scholar 

  103. Zang Q, Xu L, Li J, Jia H. GATA6 activated long non-coding RNA PCAT1 maintains stemness of non-small cell lung cancer by mediating FRK. J BUON. 2020;25(5):2371–81.

    PubMed  Google Scholar 

  104. Grunblatt E, Wu N, Zhang H, Liu X, Norton JP, Ohol Y, et al. MYCN drives chemoresistance in small cell lung cancer while USP7 inhibition can restore chemosensitivity. Genes Dev. 2020;34(17–18):1210–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang L, Yang Y, Chai L, Bu H, Yang Y, Huang H, et al. FRK plays an oncogenic role in non-small cell lung cancer by enhancing the stemness phenotype via induction of metabolic reprogramming. Int J Cancer. 2020;146(1):208–22.

    Article  CAS  PubMed  Google Scholar 

  106. Nau MM, Brooks BJ Jr, Carney DN, Gazdar AF, Battey JF, Sausville EA, et al. Human small-cell lung cancers show amplification and expression of the N-myc gene. Proc Natl Acad Sci. 1986;83(4):1092–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gao Y, Chen S, Vafaei S, Zhong X. Tumor-infiltrating immune cell signature predicts the prognosis and chemosensitivity of patients with pancreatic ductal adenocarcinoma. Front Oncol. 2020;10: 557638.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Czech-Sioli M, Siebels S, Radau S, Zahedi RP, Schmidt C, Dobner T, et al. The ubiquitin-specific protease Usp7, a novel Merkel cell polyomavirus large T-antigen interaction partner, modulates viral DNA replication. J Virol. 2020;94(5):e01638-e1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nair J, Nair A, Veerappan S, Sen D. Translatable gene therapy for lung cancer using Crispr CAS9—an exploratory review. Cancer Gene Ther. 2020;27(3):116–24.

    Article  CAS  PubMed  Google Scholar 

  110. Bidnur S, Savdie R, Black P. Inhibiting immune checkpoints for the treatment of bladder cancer. Bladder Cancer. 2016;2(1):15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, et al. NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol. 2018;9:947.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Miliotou AN, Papadopoulou LC. CAR T-cell therapy: a new era in cancer immunotherapy. Curr Pharm Biotechnol. 2018;19(1):5–18.

    Article  PubMed  Google Scholar 

  113. Su S, Hu B, Shao J, Shen B, Du J, Du Y, et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep. 2016;6(1):1–14.

    CAS  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

AK contributed to the idea design, literature search, and writing the manuscript. HK drafted the work.

Corresponding author

Correspondence to Alireza Kashefizadeh.

Ethics declarations

Conflict of interest

None.

Ethical approval

It is not applicable.

Informed consent

It is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemizadeh, H., Kashefizadeh, A. CRISPR-Cas9-mediated gene therapy in lung cancer. Clin Transl Oncol 25, 1156–1166 (2023). https://doi.org/10.1007/s12094-022-03039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03039-8

Keywords

Navigation