Skip to main content

Advertisement

Log in

Understanding the regulation of β-catenin expression and activity in colorectal cancer carcinogenesis: beyond destruction complex

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Aberrant Wnt/β-catenin signaling is central to colorectal cancer carcinogenesis. The well-known potential of targeting the canonical Wnt signaling pathway for the treatment of CRC is largely attributed to the ability of this pathway to regulate various cellular processes such as cell proliferation, metastasis, drug resistance, immune response, apoptosis, and cellular metabolism. However, with the current approach of targeting this pathway, none of the Wnt-targeted agents have been successfully implicated in clinical practice. Instead of using classical approaches to target this pathway, there is a growing need to find new and modified approaches to achieve the same. For this, a better understanding of the regulation of β-catenin, a major effector of the canonical Wnt pathway is a must. The present review addresses the importance of understanding the regulation of β-catenin beyond the destruction complex. Few recently discovered β-catenin regulators such as ZNF281, TTPAL, AGR2, ARHGAP25, TREM2, and TIPE1 showed significant potential in regulating the development of CRC through modulation of the Wnt/β-catenin signaling pathway in both in vitro and in vivo studies. Although the expression and activity of β-catenin is influenced by many protein regulators, the abovementioned proteins not only influence its expression and activation but are also directly involved in the development of CRC and various other solid tumors. Therefore, we hypothesise that focusing the current research on finding the detailed mechanism of action of these regulators may assist in providing with a better treatment approach or improve the current therapeutic regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available in the PubMed repository (https://pubmed.ncbi.nlm.nih.gov).

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. Chakravarthi BVSK, Nepal S, Varambally S. Genomic and epigenomic alterations in cancer. Am J Pathol. 2016;186:1724–35. https://doi.org/10.1016/j.ajpath.2016.02.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. La Vecchia S, Sebastián C. Metabolic pathways regulating colorectal cancer initiation and progression. Semin Cell Dev Biol. 2019. https://doi.org/10.1016/j.semcdb.2019.05.018.

    Article  PubMed  Google Scholar 

  4. Smith G, Carey FA, Beattie J, Wilkie MJV, Lightfoot TJ, Coxhead J, Garner RC, Steele RJC, Wolf CR. Mutations in APC, Kirsten-ras, and p53–alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci USA. 2002;99:9433–8. https://doi.org/10.1073/pnas.122612899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Müller MF, Ibrahim AEK, Arends MJ. Molecular pathological classification of colorectal cancer. Virchows Arch. 2016;469:125–34. https://doi.org/10.1007/s00428-016-1956-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Farooqi AA, de la Roche M, Djamgoz MBA, Siddik ZH. Overview of the oncogenic signaling pathways in colorectal cancer: mechanistic insights. Semin Cancer Biol. 2019;58:65–79. https://doi.org/10.1016/j.semcancer.2019.01.001.

    Article  CAS  PubMed  Google Scholar 

  7. Fodde R. The APC gene in colorectal cancer. Eur J Cancer. 2002;38:867–71. https://doi.org/10.1016/S0959-8049(02)00040-0.

    Article  CAS  PubMed  Google Scholar 

  8. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW. Activation of β-catenin-tcf signaling in colon cancer by mutations in β-catenin or APC. Science. 1997. https://doi.org/10.1126/science.275.5307.1787.

    Article  PubMed  Google Scholar 

  9. Yuan S, Tao F, Zhang X, Zhang Y, Sun X, Wu D. Role of Wnt/β-catenin signaling in the chemoresistance modulation of colorectal cancer. Biomed Res Int. 2020;2020:9390878. https://doi.org/10.1155/2020/9390878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fearnhead NS. The ABC of APC. Hum Mol Genet. 2001;10:721–33. https://doi.org/10.1093/hmg/10.7.721.

    Article  CAS  PubMed  Google Scholar 

  11. Canesin G, Evans-Axelsson S, Hellsten R, Krzyzanowska A, Prasad CP, Bjartell A, Andersson T. Treatment with the WNT5A-mimicking peptide Foxy-5 effectively reduces the metastatic spread of WNT5A-low prostate cancer cells in an orthotopic mouse model. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0184418.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lenz H-J, Kahn M. Safely targeting cancer stem cells via selective catenin coactivator antagonism. Cancer Sci. 2014;105:1087–92. https://doi.org/10.1111/cas.12471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roncucci L, Stamp D, Medline A, Cullen JB, Bruce WR. Identification and quantification of aberrant crypt foci and microadenomas in the human colon. Hum Pathol. 1991;22:287–94. https://doi.org/10.1016/0046-8177(91)90163-j.

    Article  CAS  PubMed  Google Scholar 

  14. Takayama T, Katsuki S, Takahashi Y, Ohi M, Nojiri S, Sakamaki S, Kato J, Kogawa K, Miyake H, Niitsu Y. Aberrant crypt foci of the colon as precursors of adenoma and cancer. N Engl J Med. 1998;339:1277–84. https://doi.org/10.1056/NEJM199810293391803.

    Article  CAS  PubMed  Google Scholar 

  15. Kunttas-Tatli E, Zhou M-N, Zimmerman S, Molinar O, Zhouzheng F, Carter K, Kapur M, Cheatle A, Decal R, McCartney BM. Destruction complex function in the Wnt signaling pathway of drosophila requires multiple interactions between adenomatous polyposis coli 2 and armadillo. Genetics. 2012;190:1059–75. https://doi.org/10.1534/genetics.111.133280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peifer M, McCrea PD, Green KJ, Wieschaus E, Gumbiner BM. The vertebrate adhesive junction proteins beta-catenin and plakoglobin and the drosophila segment polarity gene armadillo form a multigene family with similar properties. J Cell Biol. 1992;118:681–91. https://doi.org/10.1083/jcb.118.3.681.

    Article  CAS  PubMed  Google Scholar 

  17. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 1998;17:1371–84. https://doi.org/10.1093/emboj/17.5.1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stamos JL, Weis WI. The β-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5:1–16. https://doi.org/10.1101/cshperspect.a007898.

    Article  CAS  Google Scholar 

  19. Verheyen EM, Gottardi CJ. Regulation of Wnt/β-catenin signaling by protein kinases. Dev Dyn. 2010;239:34–44. https://doi.org/10.1002/dvdy.22019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hino S, Tanji C, Nakayama KI, Kikuchi A. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol. 2005;25:9063–72. https://doi.org/10.1128/MCB.25.20.9063-9072.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Veelen W, Le NH, Helvensteijn W, Blonden L, Theeuwes M, Bakker ERM, Franken PF, van Gurp L, Meijlink F, van der Valk MA, Kuipers EJ, Fodde R, Smits R. β-catenin tyrosine 654 phosphorylation increases Wnt signalling and intestinal tumorigenesis. Gut. 2011;60:1204–12. https://doi.org/10.1136/gut.2010.233460.

    Article  CAS  PubMed  Google Scholar 

  22. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26. https://doi.org/10.1016/j.devcel.2009.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005;438:873–7. https://doi.org/10.1038/nature04185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lisowsky T, Polosa PL, Sagliano A, Roberti M, Gadaleta MN, Cantatore P. Identification of human GC-box-binding zinc finger protein, a new Krüppel-like zinc finger protein, by the yeast one-hybrid screening with a GC-rich target sequence. FEBS Lett. 1999;453:369–74. https://doi.org/10.1016/s0014-5793(99)00754-1.

    Article  CAS  PubMed  Google Scholar 

  25. Qian Y, Li J, Xia S. ZNF281 promotes growth and invasion of pancreatic cancer cells by activating wnt/β-catenin signaling. Dig Dis Sci. 2017;62:2011–20. https://doi.org/10.1007/s10620-017-4611-1.

    Article  CAS  PubMed  Google Scholar 

  26. Bai L, Merchant JL. ZBP-89 promotes growth arrest through stabilization of p53. Mol Cell Biol. 2001;21:4670–83. https://doi.org/10.1128/MCB.21.14.4670-4683.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bai L, Yoon SO, King PD, Merchant JL. ZBP-89-induced apoptosis is p53-independent and requires JNK. Cell Death Differ. 2004;11:663–73. https://doi.org/10.1038/sj.cdd.4401393.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang CZY, Chen GG, Lai PBS. Transcription factor ZBP-89 in cancer growth and apoptosis. Biochim Biophys Acta. 2010;1806:36–41. https://doi.org/10.1016/j.bbcan.2010.03.002.

    Article  CAS  PubMed  Google Scholar 

  29. Fidalgo M, Shekar PC, Ang Y-S, Fujiwara Y, Orkin SH, Wang J. Zfp281 functions as a transcriptional repressor for pluripotency of mouse embryonic stem cells. Stem Cells. 2011;29:1705–16. https://doi.org/10.1002/stem.736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qin CJ, Bu PL, Zhang Q, Chen JT, Li QY, Liu JT, Dong HC, Ren XQ. ZNF281 regulates cell proliferation, migration and invasion in colorectal cancer through Wnt/β-catenin signaling. Cell Physiol Biochem. 2019;52:1503–16. https://doi.org/10.33594/000000104.

    Article  CAS  PubMed  Google Scholar 

  31. Xue YB, Ding MQ, Xue L, Luo JH. CircAGFG1 sponges miR-203 to promote EMT and metastasis of non-small-cell lung cancer by upregulating ZNF281 expression. Thorac Cancer. 2019;10:1692–701. https://doi.org/10.1111/1759-7714.13131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pieraccioli M, Nicolai S, Pitolli C, Agostini M, Antonov A, Malewicz M, Knight RA, Raschellá G, Melino G. ZNF281 inhibits neuronal differentiation and is a prognostic marker for neuroblastoma. Proc Natl Acad Sci USA. 2018;115:7356–61. https://doi.org/10.1073/pnas.1801435115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sadłecki P, Grabiec M, Grzanka D, Jóźwicki J, Antosik P, Walentowicz-Sadłecka M. Expression of zinc finger transcription factors (ZNF143 and ZNF281) in serous borderline ovarian tumors and low-grade ovarian cancers. J Ovarian Res. 2019;12:1–10. https://doi.org/10.1186/s13048-019-0501-9.

    Article  Google Scholar 

  34. Hahn S, Hermeking H. ZNF281/ZBP-99: a new player in epithelial-mesenchymal transition, stemness, and cancer. J Mol Med (Berl). 2014. https://doi.org/10.1007/s00109-014-1160-3.

    Article  Google Scholar 

  35. Law DJ, Du M, Law GL, Merchant JL. ZBP-99 defines a conserved family of transcription factors and regulates ornithine decarboxylase gene expression. Biochem Biophys Res Commun. 1999;262:113–20. https://doi.org/10.1006/bbrc.1999.1180.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu Y, Zhou Q, Zhu G, Xing Y, Li S, Ren N, Liu T, Zhu A, Bai Y, Piao D. GSK-3β phosphorylation-dependent degradation of ZNF281 by β-TrCP2 suppresses colorectal cancer progression. Oncotarget. 2017;8:88599–612. https://doi.org/10.18632/oncotarget.20100.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hahn S, Jackstadt R, Siemens H, Hünten S, Hermeking H. SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. EMBO J. 2013;32:3079–95. https://doi.org/10.1038/emboj.2013.236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scharer CD, McCabe CD, Ali-Seyed M, Berger MF, Bulyk ML, Moreno CS. Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer Res. 2009;69:709–17. https://doi.org/10.1158/0008-5472.CAN-08-3415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gou H, Liang JQ, Zhang L, Chen H, Zhang Y, Li R, Wang X, Ji J, Tong JH, To KF, Sung JJY, Chan FKL, Fang JY, Yu J. TTPAL promotes colorectal tumorigenesis by stabilizing TRIP6 to activate Wnt/$β$-catenin signaling. Cancer Res. 2019;79:3332–46. https://doi.org/10.1158/0008-5472.CAN-18-2986.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao W, Dai Y, Dai T, Xie T, Su X, Li J, Zhou X, Meng K, Zhao X. TRIP6 promotes cell proliferation in hepatocellular carcinoma via suppression of FOXO3a. Biochem Biophys Res Commun. 2017;494:594–601. https://doi.org/10.1016/j.bbrc.2017.10.117.

    Article  CAS  PubMed  Google Scholar 

  41. Miao X, Xu X, Wu Y, Zhu X, Chen X, Li C, Lu X, Chen Y, Liu Y, Huang J, Wang Y, He S. Overexpression of TRIP6 promotes tumor proliferation and reverses cell adhesion-mediated drug resistance (CAM-DR) via regulating nuclear p27Kip1 expression in non-Hodgkin’s lymphoma. Tumor Biol. 2016;37:1369–78. https://doi.org/10.1007/s13277-015-3939-4.

    Article  CAS  Google Scholar 

  42. Zhu L, Xu X, Tang Y, Zhu X. TRIP6 functions as a potential oncogene and facilitated proliferation and metastasis of gastric cancer. Biol Targets Ther. 2019;13:101–10. https://doi.org/10.2147/btt.s191863.

    Article  CAS  Google Scholar 

  43. Skalsky RL, Cullen BR. Reduced expression of brain-enriched micrornas in glioblastomas permits targeted regulation of a cell death gene. PLoS ONE. 2011;6:e24248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Foekens JA, Sieuwerts AM, Smid M, Look MP, de Weerd V, Boersma AWM, Klijn JGM, Wiemer EAC, Martens JWM. Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci. 2008;105:13021–6. https://doi.org/10.1073/pnas.0803304105.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhao X, Jiang C, Xu R, Liu Q, Liu G, Zhang Y. TRIP6 enhances stemness property of breast cancer cells through activation of Wnt/β-catenin. Cancer Cell Int. 2020;20:51. https://doi.org/10.1186/s12935-020-1136-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kong D, Piao Y-S, Yamashita S, Oshima H, Oguma K, Fushida S, Fujimura T, Minamoto T, Seno H, Yamada Y, Satou K, Ushijima T, Ishikawa T-O, Oshima M. Inflammation-induced repression of tumor suppressor miR-7 in gastric tumor cells. Oncogene. 2012;31:3949–60. https://doi.org/10.1038/onc.2011.558.

    Article  CAS  PubMed  Google Scholar 

  47. Xiong S, Zheng Y, Jiang P, Liu R, Liu X, Chu Y. MicroRNA-7 inhibits the growth of human non-small cell lung cancer A549 cells through targeting BCL-2. Int J Biol Sci. 2011;7:805–14. https://doi.org/10.7150/ijbs.7.805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ling Y, Cao C, Li S, Qiu M, Shen G, Chen Z, Yao F, Bin Chen W. TRIP6, as a target of miR-7, regulates the proliferation and metastasis of colorectal cancer cells. Biochem Biophys Res Commun. 2019;514:231–8. https://doi.org/10.1016/j.bbrc.2019.04.092.

    Article  CAS  PubMed  Google Scholar 

  49. Willier S, Butt E, Richter GHS, Burdach S, Grunewald TGP. Defining the role of TRIP6 in cell physiology and cancer. Biol Cell. 2011;103:573–91. https://doi.org/10.1042/BC20110077.

    Article  CAS  PubMed  Google Scholar 

  50. Lin VTG, Lin VY, Lai Y-J, Chen C-S, Liu K, Lin W-C, Lin F-T. TRIP6 regulates p27KIP1 to promote tumorigenesis. Mol Cell Biol. 2013;33:1394–409. https://doi.org/10.1128/mcb.01149-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin F-T, Lin VY, Lin VTG, Lin W-C. TRIP6 antagonizes the recruitment of A20 and CYLD to TRAF6 to promote the LPA2 receptor-mediated TRAF6 activation. Cell Discov. 2016. https://doi.org/10.1038/celldisc.2015.48.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Landström M. The TAK1–TRAF6 signalling pathway. Int J Biochem Cell Biol. 2010;42:585–9. https://doi.org/10.1016/j.biocel.2009.12.023.

    Article  CAS  PubMed  Google Scholar 

  53. Hong X-Y, Wang J, Li Z. AGR2 expression is regulated by HIF-1 and contributes to growth and angiogenesis of glioblastoma. Cell Biochem Biophys. 2013;67:1487–95. https://doi.org/10.1007/s12013-013-9650-4.

    Article  CAS  PubMed  Google Scholar 

  54. Aberger F, Weidinger G, Grunz H, Richter K. Anterior specification of embryonic ectoderm: the role of the Xenopus cement gland-specific gene XAG-2. Mech Dev. 1998;72:115–30. https://doi.org/10.1016/S0925-4773(98)00021-5.

    Article  CAS  PubMed  Google Scholar 

  55. Thompson DA, Weigel RJ. hAG-2, the human homologue of the Xenopus laevis cement gland gene XAG-2, is coexpressed with estrogen receptor in breast cancer cell lines. Biochem Biophys Res Commun. 1998;251:111–6. https://doi.org/10.1006/bbrc.1998.9440.

    Article  CAS  PubMed  Google Scholar 

  56. Petek E, Windpassinger C, Egger H, Kroisel PM, Wagner K. Localization1 of the human anterior gradient-2 gene (AGR2) to chromosome band 7p21.3 by radiation hybrid mapping and fluorescencein situ hybridisation. Cytogenet Genome Res. 2000;89:141–2. https://doi.org/10.1159/000015594.

    Article  CAS  Google Scholar 

  57. Fritzsche FR, Dahl E, Pahl S, Burkhardt M, Luo J, Mayordomo E, Gansukh T, Dankof A, Knuechel R, Denkert G, Winzer KJ, Dietel M, Kristiansen G. Prognostic relevance of AGR2 expression in breast cancer. Clin Cancer Res. 2006;12:1728–34. https://doi.org/10.1158/1078-0432.CCR-05-2057.

    Article  CAS  PubMed  Google Scholar 

  58. Zhao F, Edwards R, Dizon D, Afrasiabi K, Mastroianni JR, Geyfman M, Ouellette AJ, Andersen B, Lipkin SM. Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2−/− mice. Dev Biol. 2010;338:270–9. https://doi.org/10.1016/j.ydbio.2009.12.008.

    Article  CAS  PubMed  Google Scholar 

  59. Zheng W, Rosenstiel P, Huse K, Sina C, Valentonyte R, Mah N, Zeitlmann L, Grosse J, Ruf N, Nürnberg P, Costello CM, Onnie C, Mathew C, Platzer M, Schreiber S, Hampe J. Evaluation of AGR2 and AGR3 as candidate genes for inflammatory bowel disease. Genes Immun. 2006;7:11–8. https://doi.org/10.1038/sj.gene.6364263.

    Article  CAS  PubMed  Google Scholar 

  60. Dumartin L, Alrawashdeh W, Trabulo SM, Radon TP, Steiger K, Feakins RM, di Magliano MP, Heeschen C, Esposito I, Lemoine NR, Crnogorac-Jurcevic T. ER stress protein AGR2 precedes and is involved in the regulation of pancreatic cancer initiation. Oncogene. 2017;36:3094–103. https://doi.org/10.1038/onc.2016.459.

    Article  CAS  PubMed  Google Scholar 

  61. Jung SY, Yun J, Kim SJ, Kang S, Kim DY, Kim YJ, Park JH, Jang WB, Ji ST, Ha JS, Van Hong LT, Truong Giang LT, Rethineswaran VK, Kim DH, Song P, Kwon S-M. Basic helix-loop-helix transcription factor Twist1 is a novel regulator of anterior gradient protein 2 homolog (AGR2) in breast cancer. Biochem Biophys Res Commun. 2019;516:149–56. https://doi.org/10.1016/j.bbrc.2019.05.191.

    Article  CAS  PubMed  Google Scholar 

  62. Ann P, Seagle BLL, Shilpi A, Kandpal M, Shahabi S. Association of increased primary breast tumor AGR2 with decreased disease-specific survival. Oncotarget. 2018;9:23114–25. https://doi.org/10.18632/oncotarget.25225.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kamal A, Valentijn A, Barraclough R, Rudland P, Rahmatalla N, Martin-Hirsch P, Stringfellow H, Decruze SB, Hapangama DK. High AGR2 protein is a feature of low grade endometrial cancer cells. Oncotarget. 2018;9:31459–72. https://doi.org/10.18632/oncotarget.25838.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dahal Lamichane B, Jung SY, Yun J, Kang S, Kim DY, Lamichane S, Kim YJ, Park JH, Jang WB, Ji ST, Dehua L, Ha JS, Kim YH, Kwon SM. AGR2 is a target of canonical Wnt/$β$-catenin signaling and is important for stemness maintenance in colorectal cancer stem cells. Biochem Biophys Res Commun. 2019;515:600–6. https://doi.org/10.1016/j.bbrc.2019.05.154.

    Article  CAS  PubMed  Google Scholar 

  65. Tian S, Hu J, Tao K, Wang J, Chu Y, Li J, Liu Z, Ding X, Xu L, Li Q, Cai M, Gao J, Shuai X, Wang G, Wang L, Wang Z. Secreted AGR2 promotes invasion of colorectal cancer cells via Wnt11-mediated non-canonical Wnt signaling. Exp Cell Res. 2018;364:198–207. https://doi.org/10.1016/j.yexcr.2018.02.004.

    Article  CAS  PubMed  Google Scholar 

  66. Martisova A, Sommerova L, Kuricova K, Podhorec J, Vojtesek B, Kankova K, Hrstka R. AGR2 silencing contributes to metformin-dependent sensitization of colorectal cancer cells to chemotherapy. Oncol Lett. 2019;18:4964–73. https://doi.org/10.3892/ol.2019.10800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen N, Karantza-Wadsworth V. Role and regulation of autophagy in cancer. Biochim Biophys Acta. 2009;1793:1516–23. https://doi.org/10.1016/j.bbamcr.2008.12.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Madia F, Grossi V, Peserico A, Simone C. Updates from the intestinal front line: autophagic weapons against inflammation and cancer. Cells. 2012;1:535–57. https://doi.org/10.3390/cells1030535.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Li J, Hu J, Luo Z, Zhou C, Huang L, Zhang H, Chi J, Chen Z, Li Q, Deng M, Chen J, Tao K, Wang G, Wang L, Wang Z. AGR2 is controlled by DNMT3a-centered signaling module and mediates tumor resistance to 5-Aza in colorectal cancer. Exp Cell Res. 2019;385:111644. https://doi.org/10.1016/j.yexcr.2019.111644.

    Article  CAS  PubMed  Google Scholar 

  70. Csépányi-Kömi R, Sirokmány G, Geiszt M, Ligeti E. ARHGAP25, a novel Rac GTPase-activating protein, regulates phagocytosis in human neutrophilic granulocytes. Blood. 2012;119:573–82. https://doi.org/10.1182/blood-2010-12-324053.

    Article  CAS  PubMed  Google Scholar 

  71. Csépányi-Kömi R, Wisniewski É, Bartos B, Lévai P, Németh T, Balázs B, Kurz ARM, Bierschenk S, Sperandio M, Ligeti E. Rac GTPase activating protein ARHGAP25 regulates leukocyte transendothelial migration in mice. J Immunol. 2016;197:2807–15. https://doi.org/10.4049/jimmunol.1502342.

    Article  CAS  PubMed  Google Scholar 

  72. Tao L, Zhu Y, Gu Y, Zheng J, Yang J. ARHGAP25: a negative regulator of colorectal cancer (CRC) metastasis via the Wnt/β-catenin pathway. Eur J Pharmacol. 2019;858: 172476. https://doi.org/10.1016/j.ejphar.2019.172476.

    Article  CAS  PubMed  Google Scholar 

  73. Xu K, Liu B, Ma Y. The tumor suppressive roles of ARHGAP25 in lung cancer cells. Onco Targets Ther. 2019;12:6699–710. https://doi.org/10.2147/OTT.S207540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thuault S, Comunale F, Hasna J, Fortier M, Planchon D, Elarouci N, De Reynies A, Bodin S, Blangy A, Gauthier-Rouvière C. The RhoE/ROCK/ARHGAP25 signaling pathway controls cell invasion by inhibition of Rac activity. Mol Biol Cell. 2016;27:2653–61. https://doi.org/10.1091/mbc.E16-01-0041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Colonna M. TREMs in the immune system and beyond. Nat Rev Immunol. 2003;3:445–53. https://doi.org/10.1038/nri1106.

    Article  CAS  PubMed  Google Scholar 

  76. Gratuze M, Leyns CEG, Holtzman DM. New insights into the role of TREM2 in Alzheimer’s disease. Mol Neurodegener. 2018;13:66. https://doi.org/10.1186/s13024-018-0298-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Correale C, Genua M, Vetrano S, Mazzini E, Martinoli C, Spinelli A, Arena V, Peyrin-Biroulet L, Caprioli F, Passini N, Panina-Bordignon P, Repici A, Malesci A, Rutella S, Rescigno M, Danese S. Bacterial sensor triggering receptor expressed on myeloid cells-2 regulates the mucosal inflammatory response. Gastroenterology. 2013;144:346-356.e3. https://doi.org/10.1053/j.gastro.2012.10.040.

    Article  CAS  PubMed  Google Scholar 

  78. Tang W, Lv B, Yang B, Chen Y, Yuan F, Ma L, Chen S, Zhang S, Xia J. TREM2 acts as a tumor suppressor in hepatocellular carcinoma by targeting the PI3K/Akt/$β$-catenin pathway. Oncogenesis. 2019. https://doi.org/10.1038/s41389-018-0115-x.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhang X, Wang W, Li P, Wang X, Ni K. High TREM2 expression correlates with poor prognosis in gastric cancer. Hum Pathol. 2018;72:91–9. https://doi.org/10.1016/j.humpath.2017.10.026.

    Article  CAS  PubMed  Google Scholar 

  80. Wang X-Y, Zhou Y-C, Wang Y, Liu Y-Y, Wang Y-X, Chen D-D, Fan Y. miR-149 contributes to resistance of 5-FU in gastric cancer via targeting TREM2 and regulating β-catenin pathway. Biochem Biophys Res Commun. 2020;532:329–35. https://doi.org/10.1016/j.bbrc.2020.05.135.

    Article  CAS  PubMed  Google Scholar 

  81. Wang XQ, Tao BB, Li B, Wang XH, Zhang WC, Wan L, Hua XM, Li ST. Overexpression of TREM2 enhances glioma cell proliferation and invasion: a therapeutic target in human glioma. Oncotarget. 2016;7:2354–66. https://doi.org/10.18632/oncotarget.6221.

    Article  PubMed  Google Scholar 

  82. Kim SM, Kim EM, Ji KY, Lee HY, Yee SM, Woo SM, Yi JW, Yun CH, Choi H, Kang HS. TREM2 acts as a tumor suppressor in colorectal carcinoma through Wnt1/fβ-catenin and Erk signaling. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11091315.

    Article  PubMed Central  Google Scholar 

  83. Yao Y, Li H, Chen J, Xu W, Yang G, Bao Z, Xia D, Lu G, Hu S, Zhou J. TREM-2 serves as a negative immune regulator through Syk pathway in an IL-10 dependent manner in lung cancer. Oncotarget. 2016;7:29620–34. https://doi.org/10.18632/oncotarget.8813.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bouchon A, Hernandez-Munain C, Cella M, Colonna M. A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J Exp Med. 2001;194:1111–22. https://doi.org/10.1084/jem.194.8.1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Padmavathi G, Banik K, Monisha J, Bordoloi D, Shabnam B, Arfuso F, Sethi G, Fan L, Kunnumakkara AB. Novel tumor necrosis factor-$α$ induced protein eight (TNFAIP8/TIPE) family: functions and downstream targets involved in cancer progression. Cancer Lett. 2018;432:260–71. https://doi.org/10.1016/j.canlet.2018.06.017.

    Article  CAS  PubMed  Google Scholar 

  86. Goldsmith JR, Chen YH. Regulation of inflammation and tumorigenesis by the TIPE family of phospholipid transfer proteins. Cell Mol Immunol. 2017;14:482–7. https://doi.org/10.1038/cmi.2017.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cui J, Zhang G, Hao C, Wang Y, Lou Y, Zhang W, Wang J, Liu S. The expression of TIPE1 in murine tissues and human cell lines. Mol Immunol. 2011;48:1548–55. https://doi.org/10.1016/j.molimm.2011.04.023.

    Article  CAS  PubMed  Google Scholar 

  88. Hehlgans T, Pfeffer K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology. 2005;115:1–20. https://doi.org/10.1111/j.1365-2567.2005.02143.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Niture S, Dong X, Arthur E, Chimeh U, Niture S, Zheng W, Kumar D. Oncogenic role of tumor necrosis factor α-induced protein 8 (TNFAIP8). Cells. 2018;8:9. https://doi.org/10.3390/cells8010009.

    Article  CAS  PubMed Central  Google Scholar 

  90. Ye T, Yang B, Wang C, Su C, Luo J, Yang X, Yu H, Yuan Z, Meng Z, Xia J. TIPE1 impairs stemness maintenance in colorectal cancer through directly targeting $β$-catenin. Carcinogenesis. 2019. https://doi.org/10.1093/carcin/bgz079.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wu X, Ma Y, Cheng J, Li X, Zheng H, Jiang L, Zhou R. TIPE1 function as a prognosis predictor and negative regulator of lung cancer. Oncotarget. 2017;8:78496–506. https://doi.org/10.18632/oncotarget.19655.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Qiu S, Hu W, Ma Q, Zhao Y, Li L, Ding Y. TIPE1 suppresses the invasion and migration of breast cancer cells and inhibits epithelial-to-mesenchymal transition primarily via the ERK signaling pathway. Acta Biochim Biophys Sin (Shanghai). 2019;51:1008–15. https://doi.org/10.1093/abbs/gmz099.

    Article  CAS  Google Scholar 

  93. Hu W, Feng CM, Liu LY, Li N, Tian F, Du JX, Zhao Y, Xiang XX, Liu K, Zhao PQ. TIPE1 inhibits breast cancer proliferation by downregulating ERK phosphorylation and predicts a favorable prognosis. Front Oncol. 2019;9:1–11. https://doi.org/10.3389/fonc.2019.00400.

    Article  Google Scholar 

  94. Chen P, Zhou J, Li J, Zhang Q, Zuo Q. TIPE1 suppresses osteosarcoma tumor growth by regulating macrophage infiltration. Clin Transl Oncol. 2019;21:334–41. https://doi.org/10.1007/s12094-018-1927-z.

    Article  CAS  PubMed  Google Scholar 

  95. Liu W, Chen Y, Xie H, Guo Y, Ren D, Li Y, Jing X, Li D, Wang X, Zhao M, Zhu T, Wang Z, Wei X, Gao F, Wang X, Liu S, Zhang Y, Yi F. TIPE1 suppresses invasion and migration through down-regulating Wnt/$β$-catenin pathway in gastric cancer. J Cell Mol Med. 2018;22:1103–17. https://doi.org/10.1111/jcmm.13362.

    Article  CAS  PubMed  Google Scholar 

  96. Wang Y, Liu Y, Hu C, Ni X, Huang X. Tumor necrosis factor $α$-induced protein 8-like 1 promotes apoptosis by regulating B-cell leukemia/lymphoma-2 family proteins in RAW264.7 cells. Oncol Lett. 2016;12:3506–12. https://doi.org/10.3892/ol.2016.5090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014;13:513–32. https://doi.org/10.1038/nrd4233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Duchartre Y, Kim Y-M, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 2016;99:141–9. https://doi.org/10.1016/j.critrevonc.2015.12.005.

    Article  PubMed  Google Scholar 

  99. Jung Y-S, Park J-I. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp Mol Med. 2020;52:183–91. https://doi.org/10.1038/s12276-020-0380-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gray RT, Cantwell MM, Coleman HG, Loughrey MB, Bankhead P, McQuaid S, O'neill RF, Arthur K, Bingham V, McGready C, Gavin AT. Evaluation of PTGS2 expression, PIK3CA mutation, aspirin use and colon cancer survival in a population-based cohort study. Clinical and translational gastroenterology. 2017;8. https://journals.lww.com/ctg/Fulltext/2017/04000/Evaluation_of_PTGS2_Expression,_PIK3CA_Mutation,.9.aspx. Accessed 27 Apr 2017.

  101. Jonker DJ, Nott L, Yoshino T, Gill S, Shapiro J, Ohtsu A, Zalcberg J, Vickers MM, Wei AC, Gao Y, Tebbutt NC, Markman B, Price T, Esaki T, Koski S, Hitron M, Li W, Li Y, Magoski NM, Li CJ, Simes J, Tu D, O’Callaghan CJ. Napabucasin versus placebo in refractory advanced colorectal cancer: a randomised phase 3 trial. Lancet Gastroenterol Hepatol. 2018;3:263–70. https://doi.org/10.1016/S2468-1253(18)30009-8.

    Article  PubMed  Google Scholar 

  102. Parenti S, Ferrarini F, Zini R, Montanari M, Losi L, Canovi B, Ferrari S, Grande A. Mesalazine inhibits the beta-catenin signalling pathway acting through the upregulation of mu-protocadherin gene in colo-rectal cancer cells. Aliment Pharmacol Ther. 2010;31:108–19. https://doi.org/10.1111/j.1365-2036.2009.04149.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

YT have written the manuscript and NA have supervised and edited this work.

Corresponding author

Correspondence to N. Agnihotri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

All authors have given their consent for their participation.

Consent for publication

All authors have given their consent for the publishing of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taank, Y., Agnihotri, N. Understanding the regulation of β-catenin expression and activity in colorectal cancer carcinogenesis: beyond destruction complex. Clin Transl Oncol 23, 2448–2459 (2021). https://doi.org/10.1007/s12094-021-02686-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02686-7

Keywords

Navigation