Skip to main content
Log in

IFIT1 modulates the proliferation, migration and invasion of pancreatic cancer cells via Wnt/β-catenin signaling

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Objectives

Previously, Interferon-induced Protein with Tetratricopeptide Repeats 1 (IFIT1) has been shown to promote cancer development. Here, we aimed to explore the role of IFIT1 in the development and progression of pancreatic cancer, including the underlying mechanisms.

Methods

We explored IFIT1 expression in pancreatic cancer samples using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Cell Counting Kit-8 (CCK8), colony formation, scratch wound-healing and Transwell assays were performed to assess the proliferation, migration and invasion abilities of pancreatic cancer cells. Gene Set Enrichment Analysis (GSEA) and Western blotting were performed to assess the regulatory effect of IFIT1 on the Wnt/β-catenin pathway.

Results

We found that upregulation of IFIT1 expression is common in pancreatic cancer and is negatively associated with overall patient survival. Knockdown of IFIT1 expression led to decreased proliferation, migration and invasion of pancreatic cancer cells. We also found that IFIT1 could regulate Wnt/β-catenin signaling, and that a Wnt/β-catenin agonist could reverse this effect. In addition, we found that IFIT1 can promote epithelial-mesenchymal transition (EMT) of pancreatic cancer cells.

Conclusions

Our data indicate that IFIT1 increases pancreatic cancer cell proliferation, migration and invasion by activating the Wnt/β-catenin pathway. In addition, we found that EMT could be regulated by IFIT1. IFIT1 may serve as a potential therapeutic target for pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. The data are not publicly available due to privacy or ethical restrictions.

Abbreviations

ATCC:

American Type Culture Collection

CCK8:

Implementation Outcomes Framework

EMT:

Epithelial-Mesenchymal Transition

FBS:

Fetal Bovine Serum

GEO:

Gene Expression Omnibus

GSEA:

Gene Set Enrichment Analysis

GTEx:

Genotype-Tissue Expression

HR:

Hazard Ratio

IFIT1:

Interferon-induced Protein with Tetratricopeptide Repeats 1

IHC:

Immunohistochemistry

KD:

Knockdown

KM:

Kaplan-Meier

OE:

Overexpression

OS:

Overall Survival

OSCC:

Oral Squamous Cell Carcinoma

PDAC:

Pancreatic Ductal Adenocarcinoma

RT-PCR:

Reverse Transcription-polymerase Chain Reaction

TRP:

Tetratricopeptide Repeat

TCGA:

The Cancer Genome Atlas

References

  1. T. Kamisawa, L.D. Wood, T. Itoi, K. Takaori, Pancreatic cancer. Lancet. 388, 73–85 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. C. Neuzillet, A. Tijeras-Raballand, P. Bourget, J. Cros, A. Couvelard, A. Sauvanet et al., State of the art and future directions of pancreatic ductal adenocarcinoma therapy. Pharmacol. Ther. 155, 80–104 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. S. Gillen, T. Schuster, C. Meyer Zum, H. Büschenfelde, J. Friess, Kleeff, Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 7, e1000267 (2010)

  4. V.P. Groot, N. Rezaee, W. Wu, J.L. Cameron, E.K. Fishman, R.H. Hruban et al., Patterns, timing, and predictors of recurrence following pancreatectomy for pancreatic ductal adenocarcinoma. Ann. Surg. 267, 936–945 (2018)

    Article  PubMed  Google Scholar 

  5. R.L. Siegel, K.D. Miller, A. Jemal, Cancer Stat. 2017 CA Cancer J. Clin. 67, 7–30 (2017)

    Google Scholar 

  6. J. He, N. Ahuja, M.A. Makary, J.L. Cameron, F.E. Eckhauser, M.A. Choti et al., 2564 resected periampullary adenocarcinomas at a single institution: trends over three decades. HPB (Oxford). 16, 83–90 (2014)

    Article  PubMed  Google Scholar 

  7. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell. 144, 646–674 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. H. Acloque, M.S. Adams, K. Fishwick, M. Bronner-Fraser, M.A. Nieto, Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Invest. 119, 1438–1449 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. R. Kalluri, R.A. Weinberg, The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. S. Wang, S. Huang, Y.L. Sun, Epithelial-Mesenchymal transition in pancreatic cancer: a review. Biomed. Res. Int. 2017, 2646148 (2017)

  11. N. Gaianigo, D. Melisi, C. Carbone, EMT and treatment resistance in pancreatic Cancer. Cancers (Basel) 9, (2017)

  12. A.D. Rhim, E.T. Mirek, N.M. Aiello, A. Maitra, J.M. Bailey, F. Mcallister et al., EMT and dissemination precede pancreatic tumor formation. Cell. 148, 349– 61 (2012)

  13. D.M. Gonzalez, D. Medici, Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal. 7, re8 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  14. J.M. Lee, S. Dedhar, R. Kalluri, E.W. Thompson, The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J. Cell. Biol. 172, 973–981 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Nakamoto, M. Hisaoka, Clinicopathological implications of Wingless/int1 (WNT) signaling pathway in pancreatic ductal adenocarcinoma. J. Uoeh. 38, 1–8 (2016)

    Article  PubMed  Google Scholar 

  16. W.H. Lien, E. Fuchs, Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling. Genes Dev. 28, 1517–1532 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. V.S. Li, S.S. Ng, P.J. Boersema, T.Y. Low, W.R. Karthaus, J.P. Gerlach et al., Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell. 149, 1245–1256 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. L.C. Platanias, Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5, 375–386 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. R.C. Fleith, H.V. Mears, X.Y. Leong, T.J. Sanford, E. Emmott, S.C. Graham et al., IFIT3 and IFIT2/3 promote IFIT1-mediated translation inhibition by enhancing binding to non-self RNA. Nucleic Acids Res. 46, 5269–5285 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. V.K. Pidugu, M.M. Wu, A.H. Yen, H.B. Pidugu, K.W. Chang, C.J. Liu et al., IFIT1 and IFIT3 promote oral squamous cell carcinoma metastasis and contribute to the anti-tumor effect of gefitinib via enhancing p-EGFR recycling. Oncogene. 38, 3232–3247 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. G. Liu, J. Sun, Z.F. Yang, C. Zhou, P.Y. Zhou, R.Y. Guan et al., Cancer-associated fibroblast-derived CXCL11 modulates hepatocellular carcinoma cell migration and tumor metastasis through the circUBAP2/miR-4756/IFIT1/3 axis. Cell. Death Dis. 12, 260 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019)

    Article  PubMed  Google Scholar 

  23. S.H. Lin, G.S. Raju, C. Huff, Y. Ye, J. Gu, J.S. Chen et al., The somatic mutation landscape of premalignant colorectal adenoma, Gut 67, 1299– 305 (2018)

  24. N. Marschner, S. Zacharias, F. Lordick, S. Hegewisch-Becker, U. Martens, A. Welt et al., Association of Disease Progression with Health-Related quality of life among adults with breast, lung, pancreatic, and Colorectal Cancer. JAMA Netw. Open. 3, e200643 (2020)

  25. D. Creytens, NKX2.2 immunohistochemistry in the distinction of ewing sarcoma from cytomorphologic mimics: diagnostic utility and pitfalls-comment on Russell-Goldman et al. Cancer Cytopathol. 127, 202 (2019)

    Article  PubMed  Google Scholar 

  26. B.Q. Li, Z.Y. Liang, S. Seery, Q.F. Liu, L. You, T.P. Zhang et al., WT1 associated protein promotes metastasis and chemo-resistance to gemcitabine by stabilizing Fak mRNA in pancreatic cancer. Cancer Lett. 451, 48–57 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. K. Willert, R. Nusse, Beta-catenin: a key mediator of wnt signaling. Curr. Opin. Genet. Dev. 8, 95–102 (1998)

    Article  CAS  PubMed  Google Scholar 

  28. S. Yang, Y. Liu, M.Y. Li, C.S.H. Ng, S.L. Yang, S. Wang et al., FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol. Cancer. 16, 124 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  29. C.C. Liu, D.L. Cai, F. Sun, Z.H. Wu, B. Yue, S.L. Zhao et al., FERMT1 mediates epithelial-mesenchymal transition to promote colon cancer metastasis via modulation of β-catenin transcriptional activity. Oncogene. 36, 1779–1792 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. V. Fensterl, G.C. Sen, Interferon-induced ifit proteins: their role in viral pathogenesis. J. Virol. 89, 2462–2468 (2015)

    Article  PubMed  Google Scholar 

  31. R.K. Allan, T. Ratajczak, Versatile TPR domains accommodate different modes of target protein recognition and function. Cell. Stress Chaperones. 16, 353–367 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. V. Fensterl, G.C. Sen, The ISG56/IFIT1 gene family. J. Interferon Cytokine Res. 31, 71–78 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. H.H. Danish, S. Goyal, N.K. Taunk, H. Wu, M.S. Moran, B.G. Haffty, Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) as a prognostic marker for local control in T1-2 N0 breast cancer treated with breast-conserving surgery and radiation therapy (BCS + RT). Breast J. 19, 231–239 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. Y. Zhao, A. Altendorf-Hofmann, I. Pozios, P. Camaj, T. Däberitz, X. Wang et al., Elevated interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) is a poor prognostic marker in pancreatic ductal adenocarcinoma. J. Cancer Res. Clin. Oncol. 143, 1061–1068 (2017)

    Article  CAS  PubMed  Google Scholar 

  35. Y. Zhang, Y. Kong, S. Liu, L. Zeng, L. Wan, Z. Zhang, Curcumin induces apoptosis in human leukemic cell lines through an IFIT2-dependent pathway. Cancer Biol. Ther. 18, 43–50 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Y. Yang, Y. Zhou, J. Hou, C. Bai, Z. Li, J. Fan et al., Hepatic IFIT3 predicts interferon-α therapeutic response in patients of hepatocellular carcinoma, Hepatology 66, 152– 66 (2017)

  37. M.A. Nieto, R.Y. Huang, R.A. Jackson, J.P. Thiery, EMT: 2016, Cell 166, 21–45 (2016)

  38. H. Hugo, M.L. Ackland, T. Blick, M.G. Lawrence, J.A. Clements, E.D. Williams et al., Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J. Cell. Physiol. 213, 374–383 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. S. Valastyan, R.A. Weinberg, Tumor metastasis: molecular insights and evolving paradigms, Cell 147, 275– 92 (2011)

  40. A. Puisieux, T. Brabletz, J. Caramel, Oncogenic roles of EMT-inducing transcription factors. Nat. Cell. Biol. 16, 488–494 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 81773215) and the Chinese Academy of Medical Sciences (No. 2019XK320002).

Author information

Authors and Affiliations

Authors

Contributions

L.T.H. and Z.B.B. contributed to the research design, preparation of the manuscript and collection of the data. Q.C., W.Y.Y., LZR, Y.X.Y. and Z.X.T. designed the research and revised the manuscript. W.W.B. supervised the research. All the authors contributed to the article and approved the final manuscript.

Corresponding author

Correspondence to Wei-Bin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1: Fig.1

mRNA expression of IFIT1 in pancreatic cancer cell lines. Transient transduction of IFIT1 knockdown and overexpression constructs was performed, and the mRNA expression of β-catenin was examined. (A) mRNA expression of IFIT1 in 6 PC cell lines. (B) The efficiency of IFIT1 KD in Aspc-1 and Bxpc-3 cells was confirmed by qPCR. (C) The efficiency of IFIT1 overexpression in Aspc-1 and Panc-1 cells was confirmed by qPCR. (D, E) The mRNA expression of β-catenin in transiently transduced cells.

Supplementary Material 2: Table 1

Correlation between IFIT1 expression and clinicopathological characteristics of pancreatic cancer patients in TCGA datasets.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, TH., Zhao, BB., Qin, C. et al. IFIT1 modulates the proliferation, migration and invasion of pancreatic cancer cells via Wnt/β-catenin signaling. Cell Oncol. (2024). https://doi.org/10.1007/s13402-024-00925-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13402-024-00925-x

Keywords

Navigation