Skip to main content
Log in

Morphological and Molecular Differentiation of Sporidiobolus johnsonii ATCC 20490 and Its Coenzyme Q10 Overproducing Mutant Strain UF16

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Coenzyme Q10 (CoQ10) is an industrially important molecule having nutraceutical and cosmeceutical applications. CoQ10 is mainly produced by microbial fermentation and the process demands the use of strains with high productivity and yields of CoQ10. During strain improvement program consisting of sequential induced mutagenesis, rational selection and screening process, a mutant strain UF16 was generated from Sporidiobolus johnsonii ATCC 20490 with 2.3-fold improvements in CoQ10 content. EMS and UV rays were used as mutagenic agents for generating UF16 and it was rationally selected based on atorvastatin resistance as well as survival at free radicals exposure. We investigated the genotypic and phenotypic changes in UF16 in order to differentiate it from wild type strain. Morphologically it was distinct due to reduced pigmentation of colony, reduced cell size and significant reduction in mycelial growth forms with abundance of yeast forms. At molecular level, UF16 was differentiated based on PCR fingerprinting method of RAPD as well as large and small-subunit rRNA gene sequences. Rapid molecular technique of RAPD analysis using six primers showed 34 % polymorphic fragments with mean genetic distance of 0.235. The partial sequences of rRNA-gene revealed few mutation sites on nucleotide base pairs. However, the mutations detected on rRNA gene of UF16 were less than 1 % of total base pairs and its sequence showed 99 % homology with the wild type strain. These mutations in UF16 could not be linked to phenotypic or genotypic changes on CoQ10 biosynthetic pathway that resulted in improved yield. Hence, investigating the mutations responsible for deregulation of CoQ10 pathway is essential to understand the cause of overproduction in UF16. Phylogenetic analysis based on RAPD bands and rRNA gene sequences coupled with morphological variations, exhibited the novelty of mutant UF16 having potential for improved CoQ10 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jeya M, Moon HJ, Lee JL, Kim IW, Lee JK (2010) Current state of coenzyme Q10 production and its application. Appl Microbiol Biotechnol 85:1653–1663

    Article  CAS  PubMed  Google Scholar 

  2. Cluis CP, Pinel D, Martin VJJ (2012) The production of coenzyme Q10 in microorganisms. Reprogramming microbial metabolic pathways Edited By X Wang. doi: 10.1007/978-94-007-5055-5_15

  3. Littarru G (2007) Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol 37:31

    Article  CAS  PubMed  Google Scholar 

  4. Choi JH, Ryu YW, Seo JH (2005) Biotechnological production and applications of Coenzyme Q10. Appl Microbiol Biotechnol 68:9–15

    Article  CAS  PubMed  Google Scholar 

  5. Ravada SR, Emani LR, Garaga MR, Meka B, Golakoti T (2009) Synthesis of coenzyme Q10. Amer J Infect Dis 5:83–89

    Article  CAS  Google Scholar 

  6. Wu Y, Chen B, Zhen G, Zhu Y (2013) Fermentation method for producing co-enzyme Q10. US Patent 0302862

  7. Cluis CP, Ekins A, Narcross L, Jiang H, Gold ND, Burja AM, Martin VJ (2011) Identification of bottlenecks in Escherichia coli engineered for the production of CoQ10. Metab Eng 13:733–744

  8. Kawamukai M (2009) Biosynthesis and bioproduction of coenzyme Q10 by yeasts and other organisms. Biotechnol Appl Biochem 53:217–226

    Article  CAS  PubMed  Google Scholar 

  9. Huang M, Wang Y, Liu J, Mao Z (2011) Multiple strategies for metabolic engineering of Escherichia coli for efficient production of coenzyme Q10. Chin J Chem Eng 19:316–326

  10. Cluis CP, Burja AM, Martin VJJ (2007) Current prospects for the production of coenzyme Q10 in microbes. Trends Biotechnol 25:514–521

    Article  CAS  PubMed  Google Scholar 

  11. Gu SB, Yao JM, Yuan QP, Xue PJ, Zheng ZM, Wang L, Yu ZL (2006) A novel approach for improving the productivity of ubiquinone-10 producing strain by low-energy ion beam irradiation. Appl Microbiol Biotechnol 72:456–461

    Article  CAS  PubMed  Google Scholar 

  12. Kien NB, Kong I, Lee M, Kim JK (2010) Coenzyme Q10 production in a 150-l reactor by a mutant strain of Rhodobacter sphaeroides. J Ind Microbiol Biotechnol 37:521–529

    Article  CAS  PubMed  Google Scholar 

  13. Yuan Y, Tian Y, Yue T (2012) Improvement of coenzyme Q10 production: Mutagenesis induced by high hydrostatic pressure treatment and optimization of fermentation conditions. J Biomed Biotechnol. doi: 10.1155/2012/607329

  14. Yoshida H, kotani v, Ochiai K, Araki K (1998) Production of ubiquinone-10 using bacteria. J Gen Appl Microbiol 44:19–26

    Article  CAS  PubMed  Google Scholar 

  15. Nakao Y, Kitano K, Imada I, Morimoto H (1978) Method of producing ubiquinone-10. US Patent 4070244

  16. Dixson DD, Boddy CN, Doyle RP (2011) Reinvestigation of coenzyme Q10 isolation from Sporidiobolus johnsonii. Chem Biodivers 8:1033–1051

    Article  CAS  PubMed  Google Scholar 

  17. Ranadive P, Mehta A, George S (2011) Strain improvement of Sporidiobolus johnsonii ATCC 20490 for biotechnological production of coenzyme Q10. Int J Chem Eng Appl 2:216–220

    CAS  Google Scholar 

  18. Maciejak A, Leszczynska A, Warchol I, Gora M, Kaminska J, Plochocka D, Wysocka-Kapcinska M, Tulacz D, Siedlecka J, Swiezewska E, Sojka M, Danikiewicz W, Odolczyk N, Szkopinska A, Sygitowicz G, Burzynska B (2013) The effects of statins on the mevalonic acid pathway in recombinant yeast strains expressing human HMG-CoA reductase. BMC Biotechnol 13:68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Rowlands RT (1984) Industrial strain improvement: rational screens and genetic recombination techniques. Enzym Microb Technol 8:290–300

    Article  Google Scholar 

  20. Rowlands RT (1984) Industrial strain improvement: mutagenesis and random screening procedures. Enzym Microb Technol 6:3–10

    Article  CAS  Google Scholar 

  21. Rao RS, Jyothi CP, Prakasham RS, Rao CS, Sarma PN, Rao LV (2006) Strain improvement of Candida tropicalis for the production of xylitol: biochemical and physiological characterization of wild-type and mutant strain CT-OMV5. J Microbiol 44:113–120

  22. Schlick A, Kuhls K, Meyer W, Lieckfeldt E, Borner T, Messner K (1994) Fingerprinting reveals gamma-ray induced mutations in fungal DNA: implications for identification of patent strains of Trichoderma hazianum. Curr Genet 26:74–78

    Article  CAS  PubMed  Google Scholar 

  23. Cardoso PG, Queiroz MV, Pereira OL, Araujo EF (2007) Morphological and molecular differentiation of the pectinase producing fungi Penicillium expansum and Penicillium griseoroseum. Braz J Microbiol 38:71–77

    Article  Google Scholar 

  24. Soares-Ramos JRL, Ramos HJO, Cruz LM, Chubatsu LS, Pedrosa FO, Rigo LU, Souza EM (2003) Comparative molecular analysis of Herbaspirillium strains by RAPD, RFLP and 16S rDNA sequencing. Genet Mol Biol 26:537–543

    Article  CAS  Google Scholar 

  25. Aparajita S, Rout GR (2010) Molecular analysis of Albizia species using AFLP markers for conservation strategies. J Genet 89:95–99

    Article  CAS  PubMed  Google Scholar 

  26. Thakur R, Sandhu SS (2010) Species confirmation of fungal isolates by molecular analysis. Indian J Microbiol 50:280–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lee MH, Tzeng DD, Hsu FS (2006) Photodynamic effects of methionine-riboflavin mixture on antioxidant proteins. Plant Pathol Bull 15:17–24

    CAS  Google Scholar 

  28. Harrigan WF (1998) Laboratory methods in food microbiology, 3rd edn. Academic Press, San Diego

    Google Scholar 

  29. Kurtzman CP, Fell JW, Boekhout T, Robert V (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 87–110. doi:10.1016/B978-0-444-52149-1.00007-0

    Chapter  Google Scholar 

  30. Laffin RJ, Cutter VM (1959) Investigations on the life cycle of Sporidiobolus johnsonii. J Mitchell Soc 75:89–100

    Google Scholar 

  31. Thakur R, Sandhu SS (2002) A simple and economical method for isolation of fungal genomic DNA. J Basic Appl Mycol 1:92–94

    Google Scholar 

  32. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England) 23(21):2947–2948. doi: 10.1093/bioinformatics/btm404

  33. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

  34. Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco

    Google Scholar 

  35. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  37. Adrio JL, Demain AL (2006) Genetic improvements of processes yielding microbial products. FEMS Microbiol Rev 30:187–214

    Article  CAS  PubMed  Google Scholar 

  38. Tzeng DD, Lee MH (1989) Production of hydroxyl radicals in photodynamic action of methionine riboflavin mixture: a consequence of iron catalyzed Haber–Weiss reaction. Bot Bull Academia Sinica 30:171–178

    CAS  Google Scholar 

  39. Dimitrova S, Pavlova K, Lukanov L, Korotkova E, Petrova E, Zagorchev P, Kuncheva M (2012) Production of metabolites with antioxidant and emulsifying properties by Antarctic strain Sporobolomyces salmonicolor AL1. Appl Biochem Biotechnol. doi: 10.1007/s12010-12-9983-2

  40. Pfaller R, Leonhartsberger S (2004) Process for producing Sporidiobolus ruineniae strains with improved coenzyme Q10 production. US Patent 0209368

  41. Tzeng DD, Lee MH, Chung KR, DeVay JE (1990) Products in light-mediated reactions of free methionine-riboflavin mixtures that are biocidal to microorganisms. Canadian J Microbiol 36:500–505

    Article  CAS  Google Scholar 

  42. Allen JF, Raven JA (1996) Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J Mol Evol 42:482–492

    Article  CAS  PubMed  Google Scholar 

  43. Callegari S, Mckinnon RA, Andrews S, Barros Lopes MA (2010) Atorvastatin-induced cell toxicity in yeast is linked to disruption of protein isoprenylation. FEMS Yeast Res 10:188–198

    Article  CAS  PubMed  Google Scholar 

  44. Kawamukai M (2002) Biosynthesis, bioproduction and novel roles of ubiquinone. J Biosci Bioeng 94:511–517

    CAS  PubMed  Google Scholar 

  45. Galgoczy L, Nyilasi I, Papp T, Vagvogyi C (2011) Statins as antifungal agents. World J Clin Infect Dis 1:4–10

    Article  Google Scholar 

  46. Cheng B, Yuan Q, Sun X, Li W (2010) Enhanced production of coenzyme Q10 by over expressing HMG-CoA reductase and induction with arachidonic acid in Schizosaccharomyces pombe. Appl Biochem Biotechnol 160:523–531

    Article  CAS  PubMed  Google Scholar 

  47. Sakato K, Tanaka H, Shibata S, Kuratsu Y (1992) Agitation-aeration studies on coenzyme Q10 production using Rhodopseudomonas sphaeroides. Biotechnol Appl Biochem 16:19–22

    CAS  Google Scholar 

  48. Fell JW, Tallman AS (1981) Heterothallism in the basidiomycetous yeast genus Sporidiobolus Nyland. Curr Microbiol 5:77–82

    Article  Google Scholar 

  49. Tallman AS, Fell JW (1998) Sporidiobolus Nyland. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam

  50. Kurtzman CP, Fell JW, Boekhout T (2011) Gene sequence analyses and other DNA-based methods for yeast species recognition. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, A taxonomic study, 5th edn. Elsevier, Amsterdam, pp 137–144. doi:10.1016/B978-0-444-52149-1.00010-0

    Chapter  Google Scholar 

  51. Kurtzman CP (2011) Recognition of yeast species from gene sequence comparisons. Open Appl Inform J 5:20–29

    Article  Google Scholar 

  52. Ramalivhana JN, Obi CL, Samie A, Labuschagne C, Weldhagen GF (2010) Random amplified polymorphic DNA typing of clinical and environmental Aeromonas hydrophila strains from Limpopo province. South Africa. J Health Popul Nutr 28:1–6

    CAS  Google Scholar 

  53. Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Nagee A, Mukhopadhyaya PN, Kothari IL (2003) Multiple arbitrary amplicon profiling of Trichoderma species known for their potential as biocontrol agents against plant pests. J Mycol Plant Pathol 33:195–199

    CAS  Google Scholar 

  55. Herzerberg M, Fischr R, Titze A (2002) Conflicting results obtained by RAPD-PCR and large-subunit rDNA sequences in determining and comparing yeast strains isolated from flowers: a comparison of two methods. Int J Syst Evol Microbiol 52:1423–1433

    Article  Google Scholar 

  56. Zhang J, Wang X, Diao J, He H, Zhang Y, Xiang W (2013) Streptomycin resistance-aided genome shuffling to improve doramectin productivity of Streptomyces avermitilis NEU1069. J Ind Microbiol Biotechnol 40:877–889

    Article  CAS  PubMed  Google Scholar 

  57. Schlick A, Kuhls K, Meyer W, Lieckfeldt E, Borner T, Messner K (1994) Fingerprinting reveals gamma-ray induced mutations in fungal DNA: implications for identification of patent strains of Trichoderma hazianum. Curr Genet 26:74–78

    Article  CAS  PubMed  Google Scholar 

  58. Kim JH, Kim SH, Yoon JH, Lee PC (2014) Carotenoid production from n-alkanes with a broad range of chain lengths by the novel species Gordonia ajoucoccus A2T. Appl Microbiol Biotechnol. doi 10.1007/s00253-014-5516-y

  59. Carvalho FL, Costa A, Goes L, Oliveira N (2001) DNA polymorphism and total protein in mutants of Metarhizium anisopliae strain E9. Braz J Microbiol 32:93–97

    Google Scholar 

  60. Lescuyer P, Picot S, Bracchi V, Burnod J, Austin J, Perard A, Thomas P (1997) Detection of RAPD markers correlated with chloroquine resistance in Plasmodium falciparum. Genome Res 7:747–753

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Sartori D, Massi FP, Ferranti LS, Fungaro MHP (2014) Identification of genes differentially expressed between Ochratoxin producing and non-producing strains of Aspergillus westerdijkiae. Indian J Microbiol 54:41–45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. H. Sivaramakrishnan, President and Dr. Arun Balakrishnan, Sr. Vice President, Piramal Enterprises Limited for support and encouragement. We acknowledge ICON Analytical Equipments Pvt. Ltd., Worli, Mumbai for carrying out SEM observations of the samples. We thank Dr. Soma Basu, Piramal Enterprises Limited for confocal imaging of yeast samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prafull Ranadive.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranadive, P., Mehta, A., Chavan, Y. et al. Morphological and Molecular Differentiation of Sporidiobolus johnsonii ATCC 20490 and Its Coenzyme Q10 Overproducing Mutant Strain UF16. Indian J Microbiol 54, 343–357 (2014). https://doi.org/10.1007/s12088-014-0466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-014-0466-8

Keywords

Navigation