Skip to main content
Log in

Free-radical-induced mutation vs redox regulation: Costs and benefits of genes in organelles

  • Focus
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The prokaryotic endosymbionts that became plastids and mitochondria contained genes destined for one of three fates. Genes required for free-living existence were lost. Most genes useful to the symbiosis were transferred to the nucleus of the host. Some genes, a small minority, were retained within the organelle. Here we suggest that a selective advantage of movement of genes to the nucleus is decreased mutation: plastids and mitochondria have high volume-specific rates of redox reactions, producing oxygen free radicals that chemically modify DNA. These mutations lead to synthesis of modified electron carriers that in turn generate more mutagenic free radicals—the “vicious circle” theory of aging. Transfer of genes to the nucleus is also advantageous in facilitating sexual recombination and DNA repair. For genes encoding certain key components of photosynthesis and respiration, direct control of gene expression by redox state of electron carriers may be required to minimize free radical production, providing a selective advantage of organelle location which outweighs that of location in the nucleus. A previous proposal for transfer of genes to the nucleus is an economy of resources in having a single genome and a single apparatus for gene expression, but this argument fails if any organellar gene is retained. A previous proposal for the retention of genes within organelles is that certain proteins are organelle-encoded because they cannot be imported, but there is now evidence against this view. Decreased free radical mutagenesis and increased sexual recombination upon transfer to the nucleus together with redox control of gene expression in organelles may now account for the slightly different gene distributions among nuclei, plastids, and mitochondria found in major eukaryote taxa. This analysis suggests a novel reason for uniparental inheritance of organelles and the evolution of anisogametic sex, and may also account for the occurrence of nitrogen fixation in symbionts rather than in nitrogen-fixing organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen JF (1975) A two-step mechanism for the photosynthetic reduction of oxygen by ferredoxin. Biochem Biophys Res Commun 66:36–43

    Article  CAS  PubMed  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    CAS  PubMed  Google Scholar 

  • Allen JF (1993a) Redox control of gene expression and the function of chloroplast genomes—an hypothesis. Photosynth Res 36:95–102

    Article  CAS  Google Scholar 

  • Allen JF (1993b) Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol 165:609–631

    Article  CAS  Google Scholar 

  • Allen JF (1993c) Redox control of transcription: sensors, responses, regulators, activators and repressors. FEBS Lett 332:203–207

    Article  CAS  Google Scholar 

  • Allen JF (1995) Thylakoid protein phosphorylation, state 1-state 2 transitions, and photosystem stoichiometry adjustment: redox control at multiple levels of gene expression. Physiol Plant 93:196–205

    Article  CAS  Google Scholar 

  • Allen JF (1996) Separate sexes and the mitochondrial theory of ageing. J Theor Biol (in press)

  • Allen JF, Alexciev K, H»kansson G (1995) Photosynthesis. Regulation by redox signalling. Curr Biol 5:869–872

    Article  CAS  PubMed  Google Scholar 

  • Allen JF, Hall DO (1973) Superoxide reduction as a mechanism of ascorbate-stimulated oxygen uptake in isolated chloroplasts. Biochem Biophys Res Commun 52:856–862

    Article  CAS  PubMed  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    CAS  PubMed  Google Scholar 

  • Attardi G, Schatz G (1988) Biogenesis of mitochondria. Anon Rev Cell Biol 4:289–333

    CAS  Google Scholar 

  • Bell G (1988) Sex and death in Protozoa. The history of an obsession. Cambridge University Press, Cambridge

    Google Scholar 

  • Bhattacharya D, Medlin L (1995) The phylogeny of plastids: a review based on comparisons of small-subunit ribosomal RNA coding regions. J Phycol 31:489–498

    CAS  Google Scholar 

  • Bhaya D, Grossman A (1991) Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum. Mol Gen Genet 229:400–404

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Anon Rev Plant Physiol Plant Mol Biol 43:83–116

    CAS  Google Scholar 

  • Cavalier-Smith T (1987a) The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann N Y Acad Sci 503:55–71

    CAS  Google Scholar 

  • Cavalier-Smith T (1987b) Eukaryotes with no mitochondria. Nature 326:332–333

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (1993) Kingdom protozoa and its 18 phyla. Microbiol Rev 57:953–994

    CAS  PubMed  Google Scholar 

  • Cramer WA, Knaff DB (1990) Energy transduction in biological membranes. A Textbook of Bioenergetics. Springer Verlag, New York

    Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  • Douglas AE (1994) Symbiotic interactions. Oxford Science, Oxford

    Google Scholar 

  • Ellis RJ (1981) Chloroplast proteins: synthesis, transport and assembly. Annu Rev Plant Physiol 32:111–137

    Article  CAS  Google Scholar 

  • Ellis RJ (1984) The nuclear domination of chloroplast development. Sci Prog 69:129–142

    CAS  Google Scholar 

  • Fleming JE, Miquel J, Cottrell SF, Yengoyan LS, Economos AC (1982) Is cell aging caused by respiration-dependent injury to the mitochondrial genome? Gerontol 28:44–53

    CAS  Google Scholar 

  • Fork DC, Herbert SK (1993) Electron transport and photophosphorylation by photosystem I in vivo in plants and cyanobacteria. Photosynth Res 36:149–168

    Article  CAS  Google Scholar 

  • Fujiwara S, Iwahashi H, Sameya J, Nishikawa S (1993) Structure and co-transcription of the plastid-encoded rbcL and rbcS genes ofPleurochrysis carterae (Prymnesiophyceae). J Phycol 29:347–355

    Article  CAS  Google Scholar 

  • Gray MWA (1989) Origin and evolution of mitochondrial DNA. Anon Rev Cell Biol 5:25–50

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon, Oxford

    Google Scholar 

  • Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    CAS  PubMed  Google Scholar 

  • Harris EH (1989) TheChlamydomonas source-book. Academic Press, San Diego

    Google Scholar 

  • Hurst LD, Hamilton WD (1992) Cytoplasmic fusion and the nature of sexes. Proc R Soc Lond [Biol] 247:189–194

    Google Scholar 

  • Hurst LD, Hoekstra RF (1994) Shellfish genes kept in line. Nature 368:811–812

    Article  CAS  PubMed  Google Scholar 

  • H»kansson G, Allen JF (1995) Histidine and tyrosine phosphorylation in pea mitochondria: evidence for protein phosphorylation in respiratory redox signalling. FEBS Lett 372:238–242

    Google Scholar 

  • Kanevski I, Maliga P (1994) Relocation of the plastidrbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts. Proc Natl Acad Sci USA 91:1969–1973

    CAS  PubMed  Google Scholar 

  • Kersanach R, Brinkmann H, Liacid M-F, Zhang D-X, Martin W, Cerf R (1994) Five identical intron positions in ancient duplicated genes of eubacterial origin. Nature 367:387–389

    Article  CAS  PubMed  Google Scholar 

  • Khakhina LN (1992) Concepts of symbiogenesis. In: Margulis L, McMenanim M (eds) Merkel S, Coalson R (transls) A historical and critical study of the research of Russian botanists. Yale University Press, New Haven

    Google Scholar 

  • Konstantinov YM, Lutsenko GN, Podsosonny VA (1995) Genetic functions of isolated maize mitochondria under model changes of redox conditions. Biochem Mol Biol Intl 36:319–326

    CAS  Google Scholar 

  • Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621

    Article  PubMed  Google Scholar 

  • Law R, Hutson V (1992) Intracellular symbionts and the evolution of uniparental cytoplasmic inheritance. Proc R Soc Lond [Biol] 248:69–77

    CAS  Google Scholar 

  • Law R, Lewis DH (1983) Biotic environments and the maintenance of sex—some evidence from mutualistic symbioses. Biol J Linn Soc 20:249–276

    Google Scholar 

  • Loft S, Astrup A, Buemann B, Poulsen HE (1994) Oxidative DNA damage correlates with oxygen consumption in humans. FASEB J 8:534–537

    CAS  PubMed  Google Scholar 

  • Logan NA (1994) Bacterial systematics. Blackwell Scientific, Oxford

    Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. Life and its environment on the early earth. WH Freeman, San Francisco

    Google Scholar 

  • Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time and the molecular clock. Proc Natl Acad Sci USA 90:4097–4091

    Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. WH Freeman, Oxford

    Google Scholar 

  • Medlin LK, Lange M, Baumann MEM (1994) Genetic differentiation among three colony-forming species ofPhaeocystis: further evidence for the phylogeny of the Prymnesiophyta. Phycologia 33:199–212

    Google Scholar 

  • McFadden GI, Gilson PR, Hill DRA (1994) Goniomonas: rRNA sequences indicate that this phagotrophic flagellate is a close relative of the host component of cryptomonads. Eur J Phycol 29:29–32

    Google Scholar 

  • Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591

    Article  CAS  PubMed  Google Scholar 

  • Mishra NP, Francke C, van Gorkom HJ, Ghanotakis DM (1994) Destructive role of singlet oxygen during aerobic illumination of the photosystem II core complex. Biochim Biophys Acta 1186:81–90

    CAS  Google Scholar 

  • Moestrup O (1992) The algal classes. In: Watanabe MM (ed) Proceedings of the Symposium on Culture Collection of Algae. National Institute for Environmental Studies, Environmental Agency, Ibaraki, Japan pp 1–10

    Google Scholar 

  • Morden CW, Delwiche CF, Kuhsel M, Palmer KD (1992) Gene phylogenies and the endosymbiotic origin of plastids. BioSystems 28:75–90

    Article  CAS  PubMed  Google Scholar 

  • Morse D, Salois P, Markovic P, Hastings JW (1995) A nuclear-encoded form II RuBisCo in dinoflagellates. Science 268:1622–1624

    CAS  PubMed  Google Scholar 

  • Mullet JE (1988) Chloroplast development and gene expression. Annu Rev Plant Physiol Plant Mol Biol 39:475–502

    Article  CAS  Google Scholar 

  • Münscher C, Müller-Höcker J, Kadenbach B (1993) Human aging is associated with various point mutations in tRNA genes of mitochondrial DNA. Biol Chem Hoppe-Seyler 374:1009–1104

    Google Scholar 

  • Newton KJ (1988) Plant mitochondrial genomes: organization, expression and variation. Annu Rev Plant Physiol Plant Mol Biol 39:503–532

    Article  CAS  Google Scholar 

  • Ozawa T (1995) Mitochondrial DNA mutations associated with aging and degenerative diseases. Exp Gerontol 30:269–290

    Article  CAS  PubMed  Google Scholar 

  • Palmer JD (1993) A genetic rainbow of plastids. Nature 364:762–763

    Article  Google Scholar 

  • Raven JA (1984) Energetics and transport in aquatic plants. AR Liss, New York

    Google Scholar 

  • Raven JA (1987) Biochemistry, biophysics and physiology of chlorophyllb-containing algae: implications for taxonomy and phylogeny. Prog Phycol Res 5:1–122

    CAS  Google Scholar 

  • Raven JA (1993) Energy and nutrient acquisition by autotrophs symbioses and their asymbiotic ancestors. Symbiosis 14:33–60

    Google Scholar 

  • Raven JA (1994) Why are there no picoplankton O2 evolvers with volumes less than 10−19 m3? J Phytoplankton Res 16:565–580

    Google Scholar 

  • Raven JA, Johnston AM, Parsons R, Kübler JE (1994a) The influence of natural and experimental high O2 concentrations on O2-evolving phototrophs. Biol Rev 69:61–94

    Google Scholar 

  • Raven JA, Johnston AM, Parsons R, Kübler JE (1994b) The occurrence, and influence on photolithotrophs, of high O2 concentrations. Proc R Soc Edinb 102B:193–201

    Google Scholar 

  • Reiser W (ed) (1992) Algae and symbioses: plant, animals, fungi, viruses, interactions explained. Biopress, Bristol

    Google Scholar 

  • Reith M, Munholland J (1993) A high-resolution gene map of the chloroplast genome of the red algaPorphyra purpurea. Plant Cell 5:465–475

    Article  CAS  PubMed  Google Scholar 

  • Round FE (1981) The ecology of algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Rutherford AW (1989) Photosystem II, the watersplitting enzyme. Trends Biochem Sci 14:227–232

    Article  CAS  PubMed  Google Scholar 

  • Schuster W, Brennicke A (1994) The plant mitochondrial genome: physical structure, information content, RNA editing, and gene migration to the nucleus. Annu Rev Plant Physiol Plant Mol Biol 45:61–78

    Article  CAS  Google Scholar 

  • Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91:10771–10778

    CAS  PubMed  Google Scholar 

  • Skibinski DOE, Gallagher C, Beynon CM (1994) Mitochondrial DNA inheritance. Nature 368:817–818

    Article  CAS  PubMed  Google Scholar 

  • Smith DC, Douglas AE (1987) The biology of symbioses. Edward Arnold, London

    Google Scholar 

  • Sprent JI, Sprent P (1990) Nitrogen fixing organisms. Pure and applied aspects. Chapman and Hall, London

    Google Scholar 

  • Stine M, Keathley DE (1990) Paternal inheritance of plastids in Engelmann Spruce × Blue Spruce hybrids. J Hered 81:443–446

    CAS  Google Scholar 

  • von Heijne G (1986) Why mitochondria need a genome. FEBS Lett 188:1–4

    Google Scholar 

  • Whitney SM, Shaw DC, Yellowlees D (1995) Evidence that the dinoflagellate ribulose-1,5-bisphosphate carboxylase/oxygenase is related to the form II large subunit of the photosynthetic non-sulphur bacteria. Proc Roy Soc Lond Biol 259:271–275

    CAS  Google Scholar 

  • Zouros E, Ball AO, Saavedra C, Freeman KR (1994) Mitochondrial DNA inheritance. Nature 368:818

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: J.F. Allen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, J.F., Raven, J.A. Free-radical-induced mutation vs redox regulation: Costs and benefits of genes in organelles. J Mol Evol 42, 482–492 (1996). https://doi.org/10.1007/BF02352278

Download citation

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02352278

Key words

Navigation