Skip to main content
Log in

Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes

  • Research Article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Aging process is accompanied by hormonal changes characterized by an imbalance between catabolic hormones, such as cortisol and thyroid hormones which remain stable and hormones with anabolic effects (testosterone, insulin like growth factor-1 (IGF-1) and dehydroepiandrosterone sulphate (DHEAS), that decrease with age. Deficiencies in multiple anabolic hormones have been shown to predict health status and longevity in older persons.

Unlike female menopause, which is accompanied by an abrupt and permanent cessation of ovarian function (both folliculogenesis and estradiol production), male aging does not result in either cessation of testosterone production nor infertility. Although the circulating serum testosterone concentration does decline with aging, in most men this decrease is small, resulting in levels that are generally within the normal range. Hormone therapy (HT) trials have caused both apprehension and confusion about the overall risks and benefits associated with HT treatment. Stress-response hormesis from a molecular genetic perspective corresponds to the induction by stressors of an adaptive, defensive response, particularly through alteration of gene expression. Increased longevity can be associated with greater resistance to a range of stressors. During aging, a gradual decline in potency of the heat shock response occur and this may prevent repair of protein damage. Conversely, thermal stress or pharmacological agents capable of inducing stress responses, by promoting increased expression of heat-shock proteins, confer protection against denaturation of proteins and restoration of proteome function. If induction of stress resistance increases life span and hormesis induces stress resistance, hormesis most likely result in increased life span. Hormesis describes an adaptive response to continuous cellular stresses, representing a phenomenon where exposure to a mild stressor confers resistance to subsequent, otherwise harmful, conditions of increased stress. This biphasic dose–response relationship, displaying low-dose stimulation and a high-dose inhibition, as adaptive response to detrimental lifestyle factors determines the extent of protection from progression to metabolic diseases such as diabetes and more in general to hormonal dysregulation and age-related pathologies. Integrated responses exist to detect and control diverse forms of stress. This is accomplished by a complex network of the so-called longevity assurance processes, which are composed of several genes termed vitagenes. Vitagenes encode for heat shock proteins (Hsps), thioredoxin and sirtuin protein systems. Nutritional antioxidants, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways under control of Vitagene protein network. Here we focus on possible signaling mechanisms involved in the activation of vitagenes resulting in enhanced defense against functional defects leading to degeneration and cell death with consequent impact on longevity processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

LOH:

Late-onset hypogonadism

CBP:

CREB-binding protein

DHEA:

Dehydroepiandrosterone

SIRT:

Sirtuin

DHEAS:

Dehydroepiandrosterone sulfate

CO:

Carbon monoxide

SHBG:

Sex hormone binding globulin

NO:

Nitric oxide

HT:

Hormone therapy

ARE:

Antioxidant response element

HSR:

Heat shock response

Nrf2:

Nuclear factor erythroid 2-related factor

Hsp:

Heat shock protein

Keap1:

Kelch ECH Associating Protein 1

HO-1:

Heme oxygenase-1

Maf:

Musculoaponeurotic fibrosarcoma

HSF:

Heat shock transcription factor

AD:

Alzheimer’s disease

HSE:

Heat shock elements

DBD:

DNA-binding domain

HR:

Hydrophobic heptad repeats

TAD:

Trans-activation domain

eEF1A:

Eukaryotic elongation factor 1A

HSR-1:

Heat shock RNA-1

MAP kinases:

MAPK

References

  • Abraham NG, Levere RD, Freedman ML (1985) Effect of age on rat liver heme and drug metabolism. Exp Gerontol 20:277–284

    Article  CAS  PubMed  Google Scholar 

  • Akerfelt M, Vihervaara A, Laiho A, Conter A, Christians ES, Sistonen L, Henriksson E (2012) Heat shock transcription factor 1 localizes to sex chromatin during meiotic repression. J Biol Chem 285:34469–34476

    Article  Google Scholar 

  • Alam J, Cook JL (2007) How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am J Respir Cell Mol Biol 36:166–174

    Article  CAS  PubMed  Google Scholar 

  • Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, Aggarwal BB (2010) Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol 79:330–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bao Q, Pan J, Qi H, Wang L, Qian H, Jiang F, Shao Z, Xu F, Tao Z, Ma Q, Nelson P, Hu X (2014) Aging and age-related diseases - from endocrine therapy to target therapy. Mol Cell Endocrinol 394:115–118

    Article  CAS  PubMed  Google Scholar 

  • Basaria S (2013) Reproductive aging in Men. Endocrinol Metab Clin N Am 42:255–270

    Article  Google Scholar 

  • Basaria S, Wahlstrom JT, Dobs AS (2001) Anabolic-androgenic steroid therapy in the treatment of chronic diseases. J Clin Endocrinol Metab 86:5108–5117

    Article  CAS  PubMed  Google Scholar 

  • Bellia F, Vecchio G, Cuzzocrea S, Calabrese V, Rizzarelli E (2011) Neuroprotection in oxidative driven diseases by carnosine. Mol Asp Med 32:258–266

    Article  CAS  Google Scholar 

  • Bensasson RV, Zoete V, Dinkova-Kostova AT, Talalay P (2008) Two-step mechanism of induction of the gene expression of a prototypic cancer-protective enzyme by diphenols. Chem Res Toxicol 21:805–812

    Article  CAS  PubMed  Google Scholar 

  • Bhavnani BR, Stanczyk FZ (2012) Misconception and concerns about bioidentical hormones used for custom-compounded hormone therapy. J Clin Endocrinol Metab 97:756–759

    Article  CAS  PubMed  Google Scholar 

  • Bloomer SA, Zhang HJ, Brown KE, Kregel KC (2009) Differential regulation of hepatic heme oxygenase-1 protein with aging and heat stress. J Gerontol A Biol Sci Med Sci 64419–25

  • Brandes LJ (2005) Hormetic effects of hormones, antihormones, and antidepressants on cancer cell growth in culture: in vivo correlates. Crit Rev Toxicol 35:587–592

    Article  CAS  PubMed  Google Scholar 

  • Brown-Sequard CE (1889) Note on the effects produced on man by subcutaneous injections of a liquid obtained from the testicles of animals. Lancet 2:105–107

    Article  Google Scholar 

  • Butenandt A, Guenther H, Turba F (1960) On the primary metabolic action of testosterone. Hoppe Seylers Z Physiol Chem 322:28–37

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2013) Biphasic dose responses in biology, toxicology and medicine: accounting for their generalizability and quantitative features. Environ Pollut 182:452–460. doi:10.1016/j.envpol.2013.07.046

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Butterfield DA, Scapagnini G, Stella AM, Maines MD (2006) Redox regulation of heat shock protein expression by signaling involving nitric oxide and carbon monoxide: relevance to brain aging, neurodegenerative disorders, and longevity. Antioxid Redox Signal 8:444–477

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Guagliano E, Sapienza M, Panebianco M, Calafato S, Puleo E, Pennisi G, Mancuso C, Butterfield AD, Giuffrida Stella AM (2007) Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem Res 32:757–773

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Cornelius C, Mancuso C, Pennisi G, Calafato S, Bellia F, Bates TE, Giuffrida Stella AM, Schapira T, Dinkova Kostova AT, Rizzarelli E (2008) Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res 33:2444–2471

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13:1763–1811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calabrese V, Cornelius C, Cuzzocrea S, Iavicoli I, Rizzarelli E, Calabrese EJ (2011) Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol Asp Med 32:279–304

    Article  CAS  Google Scholar 

  • Calabrese EJ, Iavicoli I, Calabrese V (2012) Hormesis: why it is important to biogerontologists. Biogerontology 13:215–235

    Article  PubMed  Google Scholar 

  • Calabrese E, Iavicoli I, Calabrese V (2013) Hormesis: its impact on medicine and health. Hum Exp Toxicol 32:120–152

    Article  CAS  PubMed  Google Scholar 

  • Chapple SJ, Siow RC, Mann GE (2012) Crosstalk between Nrf2 and the proteasome: therapeutic potential of Nrf2 inducers in vascular disease and aging. Int J Biochem Cell Biol 44:1315–1320

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Kuo TC, Lin-Shiau SY, Lin JK (1996) Induction of HSP70 gene expression by modulation of Ca(+2) ion and cellular p53 protein by curcumin in colorectal carcinoma cells. Mol Carcinog 17:224–234

    Article  PubMed  Google Scholar 

  • Chou YH, Ho FM, Liu DZ, Lin SY, Tsai LH, Chen CH, Ho YS, Hung LF, Liang YC (2005) The possible role of heat shock factor-1 in the negative regulation of heme oxygenase-1. Int J Biochem Cell Biol 37:604–615

    Article  CAS  PubMed  Google Scholar 

  • Clark JH (2006) A critique of Women’s health initiative studies. Nucl Recept Signal 4:1–10

    Google Scholar 

  • Cleren C, Calingasan NY, Chen J, Beal MF (2005) Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. J Neurochem 94:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Cornelius C, Perrotta R, Graziano A, Calabrese EJ, Calabrese V (2013) Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: mitochondria as a “chi”. Immun Ageing 10:15

    Article  PubMed Central  PubMed  Google Scholar 

  • Cornelius C, Koverech G, Crupi R, Di Paola R, Koverech A, Lodato F, Scuto M, Salinaro AT, Cuzzocrea S, Calabrese EJ, Calabrese V (2014) Osteoporosis and Alzheimer pathology: role of cellular stress response and hormetic redox signaling in aging and bone remodeling. Front Pharmacol 5:120

    Article  PubMed Central  PubMed  Google Scholar 

  • Corson TW, Crews CM (2007) Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell 130:769–774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Currò M, Trovato-Salinaro A, Gugliandolo A, Koverech G, Lodato F, Caccamo D, Calabrese V, Ientile R (2014) Resveratrol protects against homocysteine-induced cell damage via cell stress response in neuroblastoma cells. J Neurosci Res. doi:10.1002/jnr.23453 [Epub ahead of print]

    PubMed  Google Scholar 

  • Davinelli S, Scapagnini G, Denaro F, Calabrese V, Benedetti F, Krishnan S, Curreli S, Bryant J, Zella D (2014) Altered expression pattern of Nrf2/HO-1 axis during accelerated-senescence in HIV-1 transgenic rat. Biogerontology. doi:10.1007/s10522-014-9511-6, Epub 2014 Jul 16

    PubMed  Google Scholar 

  • De Long MJ, Prochaska HJ, Talalay P (1985) Tissue-specific induction patterns of cancer-protective enzymes in mice by tert-butyl-4-hydroxyanisole and related substituted phenols. Cancer Res 45:546–551

    PubMed  Google Scholar 

  • Der Sarkissian S, Cailhier JF, Borie M, Stevens LM, Gaboury L, Mansour S, Hamet P, Noiseux N (2014) Celastrol protects ischemic myocardium through heat shock response with upregulation of heme oxygenase-1. Br J Pharmacol. Epub ahead of print

  • Di Domenico F, Perluigi M, Butterfield DA, Cornelius C, Calabrese V (2010) Oxidative damage in Rat brain during aging: interplay between energy and metabolic Key target proteins. Neurochem Res 35:2184–2192

    Article  PubMed  Google Scholar 

  • Di Paola R, Impellizzeri D, Trovato Salinaro A, Mazzon E, Bellia F, Cavallaro M, Cornelius C, Vecchio G, Calabrese V, Rizzarelli E, Cuzzocrea S (2011) Administration of carnosine in the treatment of acute spinal cord injury. Biochem Pharmacol 82:1478–1489

    Article  PubMed  Google Scholar 

  • Dinkova-Kostova AT (2008) The isothiocyanate sulforaphane induces the phase 2 response by signaling of the Keap1-Nrf2-ARE pathway: Implications for dietary protection against cancer. In: Dietary Modulation of Cell Signaling Pathways, edited by YJ Surh, Z. Dong, E. Cadenas and L. Packer, pp. 205–229

  • Dinkova-Kostova AT, Talalay P (2000) Persuasive evidence that quinone reductase type 1 (DT diaphorase) protects cells against the toxicity of electrophiles and reactive forms of oxygen. Free Radic Biol Med 29:231–240

    Article  CAS  PubMed  Google Scholar 

  • Dinkova-Kostova AT, Massiah MA, Bozak RE, Hicks RJ, Talalay P (2001) Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc Natl Acad Sci U S A 98:3404–3409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dinkova-Kostova AT, Fahey JW, Talalay P (2004) Chemical structures of inducers of nicotinamide quinone oxidoreductase 1 (NQO1). Methods Enzymol 382:423–448

    Article  CAS  PubMed  Google Scholar 

  • Dwyer BE, Nishimura RN, Lu SY (1995) Differential expression of heme oxygenase-1 in cultured cortical neurons and astrocytes determined by the aid of a new heme oxygenase antibody. Response to oxidative stress. Brain Res Mol Brain Res 30:37–47

    Article  CAS  PubMed  Google Scholar 

  • Ewing JF, Maines MD (2006) Regulation and expression of heme oxygenase enzymes in aged-rat brain: age related depression in HO-1 and HO-2 expression and altered stressresponse. J Neural Transm 113:439–454

    Article  CAS  PubMed  Google Scholar 

  • FDA Consumer Health Information. Bio-identicals: sorting myths from facts. http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm049311.htm

  • Fujimoto M, Hayashida N, Katoh T, Oshima K, Shinkawa T, Prakasam R, Tan K, Inouye S, Takii R, Nakai A (2010) A novel mouse HSF3 has the potential to activate nonclassical heat-shock genes during heat shock. Mol Biol Cell 21:106–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Handelsman DJ (2004) Trends and regional differences in testosterone prescribing in Australia, 1991–2001. Med J Aust 181:419–422

    PubMed  Google Scholar 

  • Hunt PR, Son TG, Wilson MA, Yu QS, Wood WH, Zhang Y, Becker KG, Greig NH, Mattson MP, Camandola S, Wolkow CA (2011) Extension of lifespan in C. elegans by naphthoquinones that act through stress hormesis mechanisms. PLoS One e21922. doi: 10.1371/journal.pone.0021922

  • Inagaki T, Gautreaux C, Luine V (2010) Acute estrogen treatment facilitates recognition memory consolidation and alters monoamine levels in memory-related brain areas. Horm Behav 58:415–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Innamorato NG, Rojo AI, García-Yagüe AJ, Yamamoto M, de Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181:680–689

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1996) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    Article  Google Scholar 

  • Kang MJ, Kim HJ, Kim HK, Lee JY, Kim DH, Jung KJ, Kim KW, Baik HS, Yoo MA, Yu BP, Chung HY (2005) The effect of age and calorie restriction on HIF-1-responsive genes in aged liver. Biogerontology 6:27–37

    Article  CAS  PubMed  Google Scholar 

  • Kappos L, Gold R, Miller DH, Macmanus DG, Havrdova E, Limmroth V, Polman CH, Schmierer K, Yousry TA, Yang M, Eraksoy M, Meluzinova E, Rektor I, Dawson KT, Sandrock AW, O’Neill GN (2008) BG-12 Phase IIb Study Investigators. Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 372:1463–1472

    Article  CAS  PubMed  Google Scholar 

  • Kitamuro T, Takahashi K, Ogawa K, Udono-Fujimori R, Takeda K, Furuyama K, Nakayama M, Sun J, Fujita H, Hida W, Hattori T, Shirato K, Igarashi K, Shibahara S (2003) Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J Biol Chem 278:9125–9133

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Akao M (1980) Reduction by fumaric acid of side effects of mitomycin C. Biochem Pharmacol 29:2839–2844

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Takagi K (1968) Physiologically active substance in Capsella bursa-pastoris. Nature 220:707–708

    Article  CAS  PubMed  Google Scholar 

  • Lavrovsky Y, Song CS, Chatterjee B, Roy AK (2000) Agedependent increase of heme oxygenase-1 gene expression in the liver mediated by NFkappaB. Mech Ageing Dev 114:49–60

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Li J, Johnson DA, Stein TD, Kraft AD, Calkins MJ, Jakel RJ, Johnson JA (2005) Nrf2, a multi-organ protector? FASEB J 19:1061–1066

    Article  PubMed  Google Scholar 

  • Lipton SA (2007) Pathologically activated therapeutics for neuroprotection. Nat Rev Neurosci 8:803–808

    Article  CAS  PubMed  Google Scholar 

  • Mancuso C, Santangelo R, Calabrese V (2013) The heme oxygenase/biliverdin reductase system: a potential drug target in Alzheimer’s disease. J Biol Regul Homeost Agents 27:75–87

    CAS  PubMed  Google Scholar 

  • Matsuoka Y, Okazaki M, Kitamura Y (1999) Induction of inducible heme oxygenase (HO-1) in the central nervous system: is HO-1 helpful or harmful? Neurotox Res 1:113–117

    Article  CAS  PubMed  Google Scholar 

  • McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD (2006) Dimerization of substrate adaptors can facilitate Cullin-mediated ubiquitylation of proteins by a “tethering” mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J Biol Chem 281:24756–24768

    Article  CAS  PubMed  Google Scholar 

  • Morse D, Choi AM (2002) Heme oxygenase-1: the “emerging molecule” has arrived. Am J Respir Cell Mol Biol 27:8–16

    Article  CAS  PubMed  Google Scholar 

  • Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–557

    Article  CAS  PubMed  Google Scholar 

  • Motterlini R, Foresti R, Bassi R, Green CJ (2000) Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med 28:1303–1312

    Article  CAS  PubMed  Google Scholar 

  • Patriarca S, Furfaro AL, Cosso L, Pesce Maineri E, Balbis E, Domenicotti C, Nitti M, Cottalasso D, Marinari UM, Pronzato MA, Traverso N (2007) Heme oxygenase 1 expression in rat liver during ageing and ethanol intoxication. Biogerontology 8:365–372

    Article  CAS  PubMed  Google Scholar 

  • Pennisi G, Cornelius C, Cavallaro MM, Trovato Salinaro A, Cambria MT, Pennisi M, Bella R, Milone P, Ventimiglia B, Migliore MR, Di Renzo L, De Lorenzo A, Calabrese V (2011) Redox regulation of cellular stress response in multiple sclerosis. Biochem Pharmacol 82:1490–1499

    Article  CAS  PubMed  Google Scholar 

  • Perluigi M, Joshi G, Sultana R, Calabrese V, De Marco C, Coccia R, Cini C, Butterfield DA (2006) In vivo protective effects of ferulic acid ethyl ester against amyloid-beta peptide 1-42-induced oxidative stress. J Neurosci Res 84:418–426

    Article  CAS  PubMed  Google Scholar 

  • Perluigi M, Di Domenico F, Giorgi A, Schininà ME, Coccia R, Cini C, Bellia F, Cambria MT, Cornelius C, Butterfield DA, Calabrese V (2010) Redox proteomics in aging rat brain: involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process. J Neurosci Res 88:3498–3507

    Article  CAS  PubMed  Google Scholar 

  • Prochaska HJ, Santamaria AB (1988) Direct measurement of NAD(P)H:quinone reductase from cells cultured in microtiter wells: a screening assay for anticarcinogenic enzyme inducers. Anal Biochem 169:328–336

    Article  CAS  PubMed  Google Scholar 

  • Prochaska HJ, De Long MJ, Talalay P (1985) On the mechanisms of induction of cancer-protective enzymes: a unifying proposal. Proc Natl Acad Sci U S A 82:8232–8236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Lipton SA (2007) Redox regulation of neuronal survival mediated by electrophilic compounds. Trends Neurosci 30:37–45

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Kosaka K, Itoh K, Kobayashi A, Yamamoto M, Shimojo Y, Kitajima C, Cui J, Kamins J, Okamoto S, Izumi M, Shirasawa T, Lipton SA (2008) Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. J Neurochem 104:1116–1131

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Saitoh S, Hosaka M, Kosaka K (2009) Simple ortho- and para-hydroquinones as compounds neuroprotective against oxidative stress in a manner associated with specific transcriptional activation. Biochem Biophys Res Commun 379:537–541

    Article  CAS  PubMed  Google Scholar 

  • Scapagnini G, Butterfield DA, Colombrita C, Sultana R, Pascale A, Calabrese V (2004) Ethyl Ferulate, a Lipophilic Polyphenol, Induces HO-1 and Protects Rat Neurons Against Oxidative Stress. Antioxid Redox Signal 6:811–818

    Article  CAS  PubMed  Google Scholar 

  • Scapagnini G, Colombrita C, Amadio M, D’Agata V, Arcelli E, Sapienza M, Quattrone A, Calabrese V (2006) Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxid Redox Signal 8:395–403

    Article  CAS  PubMed  Google Scholar 

  • Scapagnini G, Caruso C, Calabrese V (2011) Therapeutic potential of dietary polyphenols against brain ageing and neurodegenerative disorders. Adv Exp Med Biol 698:27–35

    Article  Google Scholar 

  • Schilling S, Goelz S, Linker R, Luehder F, Gold R (2006) Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration. Clin Exp Immunol 145:101–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schimrigk S, Brune N, Hellwig K, Lukas C, Bellenberg B, Rieks M, Hoffmann V, Pöhlau D, Przuntek H (2006) Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study. Eur J Neurol 13:604–610

    Article  CAS  PubMed  Google Scholar 

  • Schipper HM (2000) Heme oxygenase-1: role in brain aging and neurodegeneration. Exp Gerontol 35:821–830

    Article  CAS  PubMed  Google Scholar 

  • Sethi G, Ahn KS, Pandey MK, Aggarwal BB (2007) Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kB activation. Blood 109:2727–2735

    CAS  PubMed  Google Scholar 

  • Siciliano R, Barone E, Calabrese V, Rispoli V, Butterfield DA, Mancuso C (2011) Experimental research on nitric oxide and the therapy of Alzheimer disease: a challenging bridge. CNS Neurol Disord Drug Targets 10:766–776

    Article  CAS  PubMed  Google Scholar 

  • Siebert A, Desai V, Chandrasekaran K, Fiskum G, Jafri MS (2009) Nrf2 activators provide neuroprotection against 6-hydroxydopamine toxicity in rat organotypic nigrostriatal cocultures. J Neurosci Res 87:1659–1669

    Article  CAS  PubMed  Google Scholar 

  • Sparnins VL, Barany G, Wattenberg LW (1988) Effects of organosulfur compounds from garlic and onions on benzo[a]pyrene-induced neoplasia and glutathione S-transferase activity in the mouse. Carcinogenesis 9:131–134

    Article  CAS  PubMed  Google Scholar 

  • Spencer SR, Wilczak CA, Talalay P (1990) Induction of glutathione transferases and NAD(P)H:quinone reductase by fumaric acid derivatives in rodent cells and tissues. Cancer Res 50:7871–7875

    CAS  PubMed  Google Scholar 

  • Stoof TJ, Flier J, Sampat S, Nieboer C, Tensen CP, Boorsma DM (2001) The antipsoriatic drug dimethylfumarate strongly suppresses chemokine production in human keratinocytes and peripheral blood mononuclear cells. Br J Dermatol 144:1114–11120

    Article  CAS  PubMed  Google Scholar 

  • Sun MM, Bu H, Li B, Yu JX, Guo YS, Li CY (2009) Neuroprotective potential of phase II enzyme inducer diallyl trisulfide. Neurol Res 31:23–27

    Article  PubMed  Google Scholar 

  • Talalay P (2000) Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors 12:5–11

    Article  CAS  PubMed  Google Scholar 

  • Talalay P, Dinkova-Kostova AT, Holtzclaw WD (2003) Importance of phase 2 gene regulation in protection against electrophile and reactive oxygen toxicity and carcinogenesis. Adv Enzym Regul 43:121–134

    Article  CAS  Google Scholar 

  • Tenhunen R, Marver HS, Schmid R (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A 61:748–755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trott A, West JD, Klaić L, Westerheide SD, Silverman RB, Morimoto RI, Morano KA (2008) Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell19:1104–1112

  • Trovato Salinaro A, Cornelius C, Koverech G, Koverech A, Scuto M, Lodato F, Fronte V, Muccilli V, Reibaldi M, Longo A, Uva MG, Calabrese V (2014) Cellular stress response, redox status, and vitagenes in glaucoma: a systemic oxidant disorder linked to Alzheimer’s disease. Front Pharmacol 5:129

    Article  PubMed Central  PubMed  Google Scholar 

  • Viñas R, Jeng YJ, Watson CS (2012) Non-genomic effects of xenoestrogen mixtures. Int J Environ Res Public Health 9:2694–2714

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang C, Nieschlag E, Swerdloff R, Behre HM, Hellstrom WJ, Gooren LJ, Kaufman JM, Legros JJ, Lunenfeld B, Morales A, Morley JE, Schulman C, Thompson IM, Weidner W, Wu FC (2008) Investigation, treatment and monitoring of late-onset hypogonadism in males: ISA, ISSAM, EAU, EAA and ASA recommendations. Eur J Endocrinol 159:507–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Westerheide SD, Raynes R, Powell C, Xue B, Uversky VN (2012) HSF transcription factor family, heat shock response, and protein intrinsic disorder. Curr Protein Pept Sci 13:86–103

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ahn YH, Benjamin IJ, Honda T, Hicks RJ, Calabrese V, Cole PA, Dinkova-Kostova AT (2011) HSF1-dependent upregulation of Hsp70 by sulfhydryl-reactive inducers of the KEAP1/NRF2/ARE pathway. Chem Biol 18:1355–1361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao J, Moore AN, Clifton GL, Dash PK (2005) Sulforaphane enhances aquaporin-4 expression and decreases cerebral edema following traumatic brain injury. J Neurosci Res 82:499–506

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Kobori N, Aronowski J, Dash PK (2006) Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neurosci Lett 393:108–112

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Moore AN, Redell JB, Dash PK (2007a) Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury. J Neurosci 27:10240–10248

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Sun G, Zhang J, Strong R, Dash PK, Kan YW, Grotta JC, Aronowski J (2007b) Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke 38:3280–3286

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Calabrese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calabrese, V., Scapagnini, G., Davinelli, S. et al. Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes. J. Cell Commun. Signal. 8, 369–384 (2014). https://doi.org/10.1007/s12079-014-0253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-014-0253-7

Keywords

Navigation