Skip to main content

Advertisement

Log in

Redox Regulation of Cellular Stress Response in Aging and Neurodegenerative Disorders: Role of Vitagenes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Reduced expression and/or activity of antioxidant proteins lead to oxidative stress, accelerated aging and neurodegeneration. However, while excess reactive oxygen species (ROS) are toxic, regulated ROS play an important role in cell signaling. Perturbation of redox status, mutations favoring protein misfolding, altered glyc(osyl)ation, overloading of the product of polyunsaturated fatty acid peroxidation (hydroxynonenals, HNE) or cholesterol oxidation, can disrupt redox homeostasis. Collectively or individually these effects may impose stress and lead to accumulation of unfolded or misfolded proteins in brain cells. Alzheimer’s (AD), Parkinson’s and Huntington’s disease, amyotrophic lateral sclerosis and Friedreich’s ataxia are major neurological disorders associated with production of abnormally aggregated proteins and, as such, belong to the so-called “protein conformational diseases”. The pathogenic aggregation of proteins in non-native conformation is generally associated with metabolic derangements and excessive production of ROS. The “unfolded protein response” has evolved to prevent accumulation of unfolded or misfolded proteins. Recent discoveries of the mechanisms of cellular stress signaling have led to new insights into the diverse processes that are regulated by cellular stress responses. The brain detects and overcomes oxidative stress by a complex network of “longevity assurance processes” integrated to the expression of genes termed vitagenes. Heat-shock proteins are highly conserved and facilitate correct protein folding. Heme oxygenase-1, an inducible and redox-regulated enzyme, has having an important role in cellular antioxidant defense. An emerging concept is neuroprotection afforded by heme oxygenase by its heme degrading activity and tissue-specific antioxidant effects, due to its products carbon monoxide and biliverdin, which is then reduced by biliverdin reductase in bilirubin. There is increasing interest in dietary compounds that can inhibit, retard or reverse the steps leading to neurodegeneration in AD. Specifically any dietary components that inhibit inappropriate inflammation, AβP oligomerization and consequent increased apoptosis are of particular interest, with respect to a chronic inflammatory response, brain injury and β-amyloid associated pathology. Curcumin and ferulic acid, the first from the curry spice turmeric and the second a major constituent of fruit and vegetables, are candidates in this regard. Not only do these compounds serve as antioxidants but, in addition, they are strong inducers of the heat-shock response. Food supplementation with curcumin and ferulic acid are therefore being considered as a novel nutritional approach to reduce oxidative damage and amyloid pathology in AD. We review here some of the emerging concepts of pathways to neurodegeneration and how these may be overcome by a nutritional approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–630

    PubMed  CAS  Google Scholar 

  2. McCord JM, Fridovich I (1988) Superoxide dismutase: the first twenty years (1968–1988). Free Radic Biol. Med 5:363–369

    Article  PubMed  CAS  Google Scholar 

  3. Vina J, Borras C, Gomez-Cabrera MC, Orr WC (2006) Part of the series: from dietary antioxidants to regulators in cellular signalling and gene expression. Role of reactive oxygen species and (phyto)oestrogens in the modulation of adaptive response to stress. Free Radic Res 40:111–119

    Article  PubMed  CAS  Google Scholar 

  4. Tabner BJ, Turnbull S, El-Agnaf O, Allsop D (2001) Production of reactive oxygen species from aggregating proteins implicated in Alzheimer’s disease, Parkinson’s disease and other neurodegenerative diseases. Curr Top Med Chem 1:507–517

    Article  PubMed  CAS  Google Scholar 

  5. Zhang K, Kaufman RJ (2006) The unfolded protein response: a stress signaling pathway critical for healthand disease. Neurology 66:S102–S109

    Article  PubMed  CAS  Google Scholar 

  6. Maines MD (2005) The heme oxygenase system: update 2005. Antioxid Redox Signal 7:1761–1766

    Google Scholar 

  7. Maines MD (2005) New insights into biliverdin reductase functions: linking heme metabolism to cell signaling. Physiology 20:382–389

    Article  PubMed  CAS  Google Scholar 

  8. Baranano DE, Rao M, Ferris CD Snyder SH (2002) Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci USA 99:16093–16098

    Article  PubMed  CAS  Google Scholar 

  9. Ewing JF, Maines MD (2006) Regulation and expression of heme oxygenase enzymes in aged-rat brain: age related depression in HO-1 and HO-2 expression and altered stress-response. J Neural Transm 13:439–454

    Article  CAS  Google Scholar 

  10. Maines MD, Ewing JF, Huang TJ, Panahian N (2001) Nuclear localization of biliverdin reductase in the rat kidney: response to nephrotoxins that induce heme oxygenase-1. J Pharmacol Exp Ther 296:1091–1097

    PubMed  CAS  Google Scholar 

  11. Mancuso C, Bonsignore A, Di Stasio E, Mordente A, Motterlini R (2003) Bilirubin and S-nitrosothiols interaction: evidence for a possible role of bilirubin as a scavenger of nitric oxide. Biochem Pharmacol 66:2355–2366

    Article  PubMed  CAS  Google Scholar 

  12. Mancuso C, Bonsignore A, Capone C, Di Stasio E, Pani G (2006) Albumin-bound bilirubin interacts with nitric oxide by a redox mechanism. Antioxid Redox Signal 8:487–494

    Article  PubMed  CAS  Google Scholar 

  13. Kaur H, Hughes MN, Green CJ, Naughton P, Foresti R, Motterlini R (2003) Interaction of bilirubin and biliverdin with reactive nitrogen species. FEBS Lett 543:113–119

    Article  PubMed  CAS  Google Scholar 

  14. Calabrese V, Giuffrida Stella AM, Butterfield DA, Scapagnini G (2004) Redox regulation in neurodegeneration and longevity: role of the heme oxygenase and HSP70 systems in brain stress tolerance. Antioxid Redox Signal. 6:895–913

    PubMed  CAS  Google Scholar 

  15. Ohara N, Kikuchi Y, Shoji M, Naito M, Nakayama K (2006) Superoxide dismutase-encoding gene of the obligate anaerobe Porphyromonas gingivalis is regulated by the redox-sensing transcription activator OxyR. Microbiology 152:955–966

    Article  PubMed  CAS  Google Scholar 

  16. Hausladen A, Privalle CT, Keng T, DeAngelo J, Stamler JS (1996) Nitrosative stress: activation of the transcription factor OxyR. Cell 86:719–729

    Article  PubMed  CAS  Google Scholar 

  17. Christman MF, Storz G, Ames BN (1989) OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci USA 86:3484–3488

    Article  PubMed  CAS  Google Scholar 

  18. Motterlini R, Green CJ, Foresti R (2002) Regulation of heme oxygenase-1 by redox signals involving nitric oxide. Antiox Redox Signal 4:615–624

    Article  CAS  Google Scholar 

  19. Scapagnini G, Giuffrida Stella AM, Abraham NG, Alkon D, Calabrese V (2002) Differential expression of heme oxygenase-1 in rat brain by endotoxin (LPS). In: Abraham NG et al (eds) Heme oxygenase in biology and medicine. Kluwer Academic Plenum Publisher, NY, pp 121–134

  20. Calabrese V, Copani A, Testa D, Ravagna A, Spadaro F, Tendi E, Nicoletti VG, Giuffrida Stella AM (2000) Nitric oxide synthase induction in astroglial cell cultures: effect on heat shock protein 70 synthesis and oxidant/antioxidant balance. J Neurosci Res 60:613–622

    Article  PubMed  CAS  Google Scholar 

  21. Motterlini R, Foresti R, Bassi R, Calabrese V, Clark JE, Green CJ (2000) Endothelial heme oxygenase-1 induction by hypoxia. Modulation by inducible nitric-oxide synthase and S-nitrosothiols. J Biol Chem 275:13613–13620

    Article  PubMed  CAS  Google Scholar 

  22. Drake J, Sultana R, Aksenova M, Calabrese V, Butterfield DA (2003) Elevation of mitochondrial glutathione by γ-glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. J Neurosci Res 74:917–927

    Article  PubMed  CAS  Google Scholar 

  23. Butterfield DA, Castegna A, Pocernich CB, Drake J, Scapagnini G, Calabrese V (2002) Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J Nutr Biochem 13:444–461

    Article  PubMed  CAS  Google Scholar 

  24. Alam J, Cook JL (2003) Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway. Curr Pharm Des 9:2499–2511

    Article  PubMed  CAS  Google Scholar 

  25. Balogun E, Hoque M, Gong P, Killeen E, Green CJ, Foresti R, Alam J, Motterlini R (2003) Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 371:887–895

    Article  PubMed  CAS  Google Scholar 

  26. Poon F, Calabrese V, Scapagnini G, Butterfield DA (2004) Free radicals: key to brain aging and heme oxygenase as a cellular response to oxidative stress. J Gerontol A Biol Sci Med Sci 59:478–493

    PubMed  Google Scholar 

  27. Calabrese V, Ravagna A, Colombrita C, Guagliano E, Scapagnini G, Calvani M, Butterfield DA, Giuffrida Stella AM (2005) Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: involvement of the transcription factor Nrf2. J Neurosci Res 79:509–521

    Article  PubMed  CAS  Google Scholar 

  28. Calabrese V, Scapagnini G, Ravagna A, Colombrita C, Spadaro F, Butterfield DA, Giuffrida Stella AM (2004) Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mech Ageing Dev 125:325–335

    Article  PubMed  CAS  Google Scholar 

  29. Calabrese V, Testa D, Ravagna A, Bates TE, Giuffrida Stella AM (2000) Hsp70 induction in the brain following ethanol administration in the rat: regulation by glutathione redox state. Biochem Biophys Res Commun 269:397–400

    Article  PubMed  CAS  Google Scholar 

  30. Poon HF, Calabrese V, Scapagnini G, Butterfield DA (2004) Free radicals and brain aging. Clin Geriatr Med 20:329–359

    Article  PubMed  Google Scholar 

  31. Calabrese V, Scapagnini G, Colombrita C, Ravagna A, Pennisi G, Giuffrida Stella AM, Galli F, Butterfield DA (2003) Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: a nutritional approach. Amino Acids 25:437–444

    Article  PubMed  CAS  Google Scholar 

  32. Franklin TB, Krueger-Naug AM, Clarke DB, Arrigo AP, Currie RW (2005) The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int J Hyperthermia 21:379–392

    Article  PubMed  CAS  Google Scholar 

  33. Igarashi K, Sun J (2006) The heme-bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signal 8:107–118

    Article  PubMed  CAS  Google Scholar 

  34. Mosser DD, Morimoto RI (2004) Molecular chaperones and the stress of oncogenesis. Oncogene 23:2907–2918

    Article  PubMed  CAS  Google Scholar 

  35. Sultana R, Ravagna A, Mohmmad-Abdul H, Calabrese V, Butterfield DA (2005) Ferulic acid ethyl ester protects neurons against amyloid beta-peptide(1-42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J Neurochem 92:749–758

    Article  PubMed  CAS  Google Scholar 

  36. Calabrese V, Scapagnini G, Ravagna A, Fariello RG, Giuffrida Stella AM, Abraham NG (2002) Regional distribution of heme oxygenase, HSP70, and glutathione in brain: relevance for endogenous oxidant/antioxidant balance and stress tolerance. J Neurosci Res 68:65–75

    Article  PubMed  CAS  Google Scholar 

  37. Calabrese V, Bates TE, Giuffrida Stella AM (2000) NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance. Neurochem Res 25:1315–1341

    Article  PubMed  CAS  Google Scholar 

  38. Joshi G, Perluigi M, Sultana R, Agrippino R, Calabrese V, Butterfield DA (2006) In vivo protection of synaptosomes by ferulic acid ethyl ester (FAEE) from oxidative stress mediated by 2,2-azobis(2-amidino-propane)dihydrochloride (AAPH) or Fe(2+)/H(2)O(2): insight into mechanisms of neuroprotection and relevance to oxidative stress-related neurodegenerative disorders. Neurochem Int 48:318–327

    Article  PubMed  CAS  Google Scholar 

  39. Izaki K, Kinouchi H, Watanabe K, Owada Y, Okubo A, Itoh H, Kondo H, Tashima Y, Tamura S, Yoshimoto T, Mizoi K (2001) Induction of mitochondrial heat shock protein 60 and 10 mRNAs following transient focal cerebral ischemia in the rat. Brain Res Mol Brain Res 31:14–25

    Article  Google Scholar 

  40. Okubo A, Kinouchi H, Owada Y, Kunizuka H, Itoh H, Izaki K, Kondo H, Tashima Y, Yoshimoto T, Mizoi K (2000) Simultaneous induction of mitochondrial heat shock protein mRNAs in rat forebrain ischemia. Brain Res Mol Brain Res 84:127–134

    Article  PubMed  CAS  Google Scholar 

  41. Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554

    Article  PubMed  CAS  Google Scholar 

  42. Maines MD (1981) Zinc-protoporphyrin is a selective inhibitor of heme oxygenase activity in the neonatal rat. Biochim Biophys Acta 673:339–350

    PubMed  CAS  Google Scholar 

  43. Mancuso C, Kostoglou-Athanassiou I, Forsling ML, Grossman AB, Preziosi P, Navarra P, Minotti G (1997) Activation of heme oxygenase and consequent carbon monoxide formation inhibits the release of arginine vasopressin from rat hypothalamic explants. Molecular linkage between heme catabolism and neuroendocrine function. Mol Brain Res 50:267–276

    Article  PubMed  CAS  Google Scholar 

  44. Mancuso C (2004) Heme oxygenase and its products in the nervous system. Antioxid Redox Signal 6:878–887

    PubMed  CAS  Google Scholar 

  45. Maines MD (1992) Heme oxygenase in clinical applications and functions. CRC Press, Boca Raton

    Google Scholar 

  46. Wang X, Hauptmann N, Taylor E, Foreman M, Khawli LA, Maines MD (2003) Neotrofin increases heme oxygenase-1 selectively in neurons. Brain Res 962:1–14

    Article  PubMed  CAS  Google Scholar 

  47. Shibahara S (2003) The heme oxygenase dilemma in cellular homeostasis: new insights for the feedback regulation of heme catabolism. Tohoku J Exp Med 200:167–186

    Article  PubMed  CAS  Google Scholar 

  48. Wu L, Wang R (2005) Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 57:585–630

    Article  PubMed  CAS  Google Scholar 

  49. Stocker R (2004) Antioxidant activities of bile pigments. Antioxid Redox Signal 6:841–849

    PubMed  CAS  Google Scholar 

  50. Maines MD, Panahian N (2001) The heme oxygenase system and cellular defense mechanisms. Do HO-1 and HO-2 have different functions? Adv Exp Med Biol 502:249–272

    PubMed  CAS  Google Scholar 

  51. Hill-Kapturczak N, Sikorski EM, Voakes C, Garcia J, Nick HS, Agarwal A (2003) An internal enhancer regulates heme and cadmium-mediated induction of human heme oxygenase-1. Am J Physiol Renal Physiol 285:F515–F523

    PubMed  Google Scholar 

  52. Sun J, Hoshino O, Takaku K, Nakajima O, Muto A, Suzuki H, Tashiro S, Takahashi S, Shibahara S, Alam J, Taketo M, Yamamoto M, Igarashi K (2002) Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J 21:5216–5224

    Article  PubMed  CAS  Google Scholar 

  53. Stewart D, Killeen E, Naquin R, Alam S, Alam J (2003) Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J Biol Chem 278:2396–2402

    Article  PubMed  CAS  Google Scholar 

  54. Scapagnini G, D’Agata V, Calabrese V, Pascale A, Colombrita C, Alkon D, Cavallaro S (2002) Gene expression profiles of heme oxygenase isoforms in the rat brain. Brain Res 954:51–59

    Article  PubMed  CAS  Google Scholar 

  55. Ewing JF, Maines MD (1995) Immunohistochemical localization of biliverdin reductase in rat brain: age related expression of protein and transcript. Brain Res 672:29–41

    Article  PubMed  CAS  Google Scholar 

  56. Maines MD, Trakshel GM (1993) Purification and characterization of human biliverdin reductase. Arch Biochem Biophys 300:320–326

    Article  PubMed  CAS  Google Scholar 

  57. Ewing JF, Weber CM, Maines MD (1993) Biliverdin reductase is heat resistant and coexpressed with constitutive and heat shock forms of heme oxygenase in brain. J Neurochem 6:1015–1023

    Article  Google Scholar 

  58. Dwyer BE, Nishimura RN, Lu SY (1995) Differential expression of heme oxygenase-1 in cultured cortical neurons and astrocytes determined by the aid of a new heme oxygenase antibody. Response to oxidative stress. Mol Brain Res 30:37–47

    Article  PubMed  CAS  Google Scholar 

  59. McCoubrey WK Jr, Huang TJ, Maines MD (1997) Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 247:725–732

    Article  PubMed  CAS  Google Scholar 

  60. Arnèr ESJ, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  PubMed  Google Scholar 

  61. Das KC (2005) Thioredoxin and its role in premature newborn biology. Antioxid. Redox Signal 7:1740–1743

    Article  PubMed  CAS  Google Scholar 

  62. Cho CG, Kim HJ, Chung SW, Jung KJ, Shim KH, Yu BP, Yodoi J, Chung HY (2003) Modulation of glutathione and thioredoxin systems by calorie restriction during the aging process. Exp Gerontol 38:539–548

    Article  PubMed  CAS  Google Scholar 

  63. Sun QA, Kirnarsky L, Sherman S, Gladyshev VN (2001) Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc Natl Acad Sci USA 98:3673–3678

    Article  PubMed  CAS  Google Scholar 

  64. May JM, Morrow JD, Burk RF (2002) Thioredoxin reductase reduces lipid hydroperoxides and spares alpha-tocopherol. Biochem Biophys Res Commun 292:45–49

    Article  PubMed  CAS  Google Scholar 

  65. Klotz LO, Sies H (2003) Defenses against peroxynitrite: selenocompounds and flavonoids. Toxicol Lett 140–141:125–132

    Google Scholar 

  66. Schweizer U, Brauer AU, Kohrle .J, Nitsch R, Savaskan NE (2004) Selenium and brain function: a poorly recognized liaison. Brain Res Brain Res Rev 45:164–178

    Article  PubMed  CAS  Google Scholar 

  67. Venardos K, Harrison G, Headrick J, Perkins A (2004) Effects of dietary selenium on glutathione peroxidase and thioredoxin reductase activity and recovery from cardiac ischemia reperfusion. J Trace Elem Med Biol 18:81–88

    Article  PubMed  CAS  Google Scholar 

  68. Richardson DR (2005) More roles for selenoprotein P: local selenium storage and recycling protein in the brain. J Biochem 386:5–7

    Article  Google Scholar 

  69. Jimenez A, Huikko MP, Gustafsson JA, Miranda-Vizuete A (2006) Characterization of human thioredoxin-like-1: potential involvement in the cellular response against glucose deprivation. FEBS Lett 580:960–967

    Article  PubMed  CAS  Google Scholar 

  70. Patenaude A, Murthy MR, Mirault ME (2005) Emerging roles of thioredoxin cycle enzymes in the central nervous system. Cell Mol Life Sci 62:1063–1080

    Article  PubMed  CAS  Google Scholar 

  71. Kim YC, Yamaguchi Y, Kondo N, Masutani H, Yodoi J (2003) Thioredoxin-dependent redox regulation of the antioxidant responsive element (ARE) in electrophile response. Oncogene 22:1860–1865

    Article  PubMed  CAS  Google Scholar 

  72. Hirota K, Nakamura H, Masutani H, Yodoi J (2002) Thioredoxin superfamily and thioredoxin-inducing agents. Ann NY Acad Sci 957:189–199

    Article  PubMed  CAS  Google Scholar 

  73. Biaglow JE, Miller RA (2005) The thioredoxin reductase/thioredoxin system: novel redox targets for cancer therapy. Cancer Biol Ther 4:6–13

    Article  PubMed  CAS  Google Scholar 

  74. Bai J, Nakamura H, Kwon YW, Hattori I, Yamaguchi Y, Kim YC, Kondo N, Oka S, Ueda S, Masutani H, Yodoi J (2003) Critical roles of thioredoxin in nerve growth factor-mediated signal transduction and neurite outgrowth in PC12 cells. J Neurosci 23:503–509

    PubMed  CAS  Google Scholar 

  75. Masutani H, Bai J, Kim YC, Yodoi J (2004) Thioredoxin as a neurotrophic cofactor and an important regulator of neuroprotection. Mol Neurobiol 29:229–242

    Article  PubMed  CAS  Google Scholar 

  76. Trigona WL, Mullarky IK, Cao Y, Sordillo LM (2006) Thioredoxin reductase regulates the induction of heme oxygenase-1 expression in aortic endothelial cells. J Biochem 394:207–216

    Article  CAS  Google Scholar 

  77. Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650

    Article  PubMed  CAS  Google Scholar 

  78. Das KC, Das CK (2000) Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger: redox independent functions. Biochem Biophys Res Commun 277:443–447

    Article  PubMed  CAS  Google Scholar 

  79. Rhee SG, Kang SW, Chang TS, Jeong W, Kim K (2001) Peroxiredoxin, a novel family of peroxidases. IUBMB Life 52:35–41

    Article  PubMed  CAS  Google Scholar 

  80. Krapfenbauer K, Engidawork E, Cairns N, Fountoulakis M, Lubecb G (2003) Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res 967:152–160

    Article  PubMed  CAS  Google Scholar 

  81. Nonn L, Williams RR, Erickson RP, Powis G (2003) The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol. Cell. Biol. 23:916–922

    Article  PubMed  CAS  Google Scholar 

  82. Chen Y, Cai J, Murphy TJ, Jones DP (2002) Overexpressed human mitochondrial thioredoxin confers resistance to oxidant-induced apoptosis in human osteosarcoma cells. J Biol Chem 277:33242–33248

    Article  PubMed  CAS  Google Scholar 

  83. Rybnikova E, Damdimopoulos AE, Gustafsson JA, Spyrou G, Pelto-Huikko M (2000) Expression of novel antioxidant thioredoxin-2 in the rat brain. Eur J Neurosci 12:1669–1678

    Article  PubMed  CAS  Google Scholar 

  84. Apostolova LG, Dutton RA, Dinov ID, Hayashi KM, Toga AW, Cummings JL, Thompson PM (2006) Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch Neurol 63:693–699

    Article  PubMed  Google Scholar 

  85. Beere HM (2004) “The stress of dying”: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117:2641–2651

    Article  PubMed  CAS  Google Scholar 

  86. Sahara N, Murayama M, Mizoroki T, Urushitani M, Imai Y, Takahashi R, Murata S, Tanaka K, Takashima A (2005) In vivo evidence of CHIP up-regulation attenuating tau aggregation. J Neurochem 94:1254–1263

    Article  PubMed  CAS  Google Scholar 

  87. Kosik KS, Shimura H (2005) Phosphorylated tau and the neurodegenerative foldopathies. Biochim Biophys Acta 1739:298–310

    PubMed  CAS  Google Scholar 

  88. Fonte V, Kapulkin V, Taft A, Fluet A, Friedman D, Link CD (2002) Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc Natl Acad Sci USA 99:9439–9444

    Article  PubMed  CAS  Google Scholar 

  89. Wu Y, Luo Y (2005) Transgenic C. elegans as a model in Alzheimer’s research. Curr Alzheimer Res 2:37–45

    Article  PubMed  CAS  Google Scholar 

  90. Magrane J, Smith RC, Walsh K, Querfurth HW (2004) Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci 24:1700–1706

    Article  PubMed  CAS  Google Scholar 

  91. Takahashi M, Dore S, Ferris CD, Tomita T, Sawa A, Wolosker H, Borchelt DR, Iwatsubo T, Kim SH, Thinakaran G, Sisodia SS, Snyder SH (2000) Amyloid precursor proteins inhibit heme oxygenase activity and augment neurotoxicity in Alzheimer’s disease. Neuron 28:461–473

    Article  PubMed  CAS  Google Scholar 

  92. Premkumar DR, Smith MA, Richey PL, Petersen RB, Castellani R, Kutty RK, Wiggert B, Perry G, Kalaria RN (1995) Induction of heme oxygenase-1 mRNA and protein in neocortex and cerebral vessels in Alzheimer’s disease. J Neurochem 65:1399–1402

    Article  PubMed  CAS  Google Scholar 

  93. Takeda A, Perry G, Abraham NG, Dwyer BE, Kutty RK, Laitinen JT, Petersen RB, Smith MA (2000) Overexpression of heme oxygenase in neuronal cells, the possible interaction with tau. J Biol Chem 275:5395–5399

    Article  PubMed  CAS  Google Scholar 

  94. Schipper HM. (2000) Heme oxygenase-1: role in brain aging and neurodegeneration. Exp Gerontol 35:821–830

    Article  PubMed  CAS  Google Scholar 

  95. Lovell MA, Xie C, Gabbita SP, Markesbery WR (2000) Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer’s disease brain. Free Radic Biol Med 28:418–427

    Article  PubMed  CAS  Google Scholar 

  96. Calabrese V, Sultana R, Scapagnini G, Guagliano E, Sapienza M, Bella R, Kanski J, Pennisi G, Mancuso C, Giuffrida Stella AM, Butterfield DA (2006) Nitrosative stress, cellular stress response and thiol homeostasis in patients with Alzheimer’s disease. Antiox Redox Signal 8:1975–1986

    Article  CAS  Google Scholar 

  97. Calabrese V, Scapagnini G, Ravagna A, Bella R, Foresti R, Bates TE, Giuffrida Stella AM, Pennisi G (2002) Nitric oxide synthase is present in the cerebrospinal fluid of patients with active multiple sclerosis and is associated with increases in CSF protein nitrotyrosine, S-nitrosothiols and with changes in glutathione levels. J Neurosci Res 70:580–587

    Article  PubMed  CAS  Google Scholar 

  98. Calabrese V, Butterfield DA, Giuffrida Stella AM (2003) Nutritional antioxidants and the heme oxygenase pathway of stress tolerance: novel targets for neuroprotection in Alzheimer’s disease. It J Biochem 52:72–76

    Google Scholar 

  99. Scapagnini G, Butterfield DA, Colombrita C, Sultana R, Pascale A, Calabrese V (2004) Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxid Redox Signal 6:811–818

    PubMed  CAS  Google Scholar 

  100. Scapagnini G, Foresti R, Calabrese V, Giuffrida Stella AM, Green CJ, Motterlini R (2002) Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers. Mol Pharmacol 61:554–561

    Article  PubMed  CAS  Google Scholar 

  101. Motterlini R, Foresti R, Bassi R, Green CJ (2000) Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med 28:1303–1312

    Article  PubMed  CAS  Google Scholar 

  102. Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, Yamamoto M, Igarashi K (1996) Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol 16:6083–6095

    PubMed  CAS  Google Scholar 

  103. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    PubMed  CAS  Google Scholar 

  104. Kanski J, Aksenova M, Stoyanova A, Butterfield DA (2002) Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J Nutr Biochem 13:273–281

    Article  PubMed  CAS  Google Scholar 

  105. Kim HS, Cho JY, Kim DH, Yan JJ, Lee HK, Suh HW, Song DK (2004) Inhibitory effects of long-term administration of ferulic acid on microglial activation induced by intracerebroventricular injection of beta-amyloid peptide(1-42) in mice. Biol Pharm Bull 27:120–121

    Article  PubMed  CAS  Google Scholar 

  106. Calabrese V, Colombrita C, Scapagnini G, Calvani M, Giuffrida Stella AM, Butterfield DA (2006) Acetylcarnitine and cellular stress response: role in nutritional redox homeostasis and regulation of longevity genes. J Nutr Biochem17:73–88

    Article  PubMed  CAS  Google Scholar 

  107. Calabrese V, Colombrita C, Sultana R, Scapagnini G, Calvani M, Butterfield DA, Giuffrida Stella AM (2006) Redox modulation of heat shock protein expression by acetylcarnitine in aging brain: relationship to antioxidant status and mitochondrial function. Antioxid Redox Signal 8:404–416

    Article  PubMed  CAS  Google Scholar 

  108. Poon HF, Calabrese V, Calvani M, Butterfield DA (2006) Proteomics analyses of specific protein oxidation and protein expression in aged rat brain and its modulation by l-acetylcarnitine: insights into the mechanisms of action of this proposed therapeutic agent for CNS disorders associated with oxidative stress. Antioxid Redox Signal 8:381–394

    Article  PubMed  CAS  Google Scholar 

  109. Huang TJ, McCoubrey WK Jr, Maines MD (2001) Heme oxygenase-2 interaction with metalloporphyrins: function of heme regulatory motifs. Antioxid Redox Signal 3:685–696

    Article  PubMed  CAS  Google Scholar 

  110. Poon HF, Frasier M, Shreve N, Calabrese V, Wolozin B, Butterfield DA (2005) Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice––a model of familial Parkinson’s disease. Neurobiol Dis 18:492–498

    Article  PubMed  CAS  Google Scholar 

  111. Hyun DH, Gray DA, Halliwell B, Jenner P (2004) Interference with ubiquitination causes oxidative damage and increased protein nitration: implications for neurodegenerative diseases. J Neurochem 90:422–430

    Google Scholar 

  112. Calabrese V, Butterfield DA, Scapagnini G, Giuffrida Stella AM, Maines MD (2006) Redox regulation of heat shock protein expression by signaling involving nitric oxide and carbon monoxide: relevance to brain aging, neurodegenerative disorders, and longevity. Antioxid Redox Signal 8:444–477

    Article  PubMed  CAS  Google Scholar 

  113. Kim JR, Kwon KS, Yoon HW, Lee SR, Rhee SG (2002) Oxidation of proteinaceous cysteine residues by dopamine-derived H2O2 in PC12 Cells. Arch Biochem Biophys 397:414–423

    Article  PubMed  CAS  Google Scholar 

  114. Kang SW, Rhee SG, Chang TS, Jeong W, Choi MH (2005) 2-Cys-peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends Mol Med 11:571–578

    Article  PubMed  CAS  Google Scholar 

  115. Hoffmann JH, Linke K, Graf PC, Lilie H, Jakob U (2004) Identification of a redox-regulated chaperone network. Embo J 23:160–168

    Article  PubMed  CAS  Google Scholar 

  116. Beckman JS, Carlson M, Smith CD, Koppenol WH (1993) ALS, SOD and peroxynitrite. Nature 364:584–586

    Article  PubMed  CAS  Google Scholar 

  117. Heales SJR, Bolanos JP, Stewart VC, Brookes PS, Land JM, Clark JB (1999) Nitric oxide, mitochondria and neurological disease. Biochem Biophys Acta 1410:215–228

    Article  PubMed  CAS  Google Scholar 

  118. Perluigi M, Fai Poon H, Hensley K, Pierce WM, Klein JB, Calabrese V, De Marco C, Butterfield DA (2005) Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice—A model of familial amyotrophic lateral sclerosis. Free Rad Biol Med 38:960–968

    Article  PubMed  CAS  Google Scholar 

  119. Poon HF, Hensley K, Thongboonkerd V, Merchant ML, Lynn BC, Pierce WM, Klein JB, Calabrese V, Butterfield DA (2005) Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice––a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 39:453–462

    Article  PubMed  CAS  Google Scholar 

  120. Lodi R, Tonon C, Calabrese V, Schapira AH (2006) Friedreich’s ataxia: from disease mechanisms to therapeutic interventions. Antioxid Redox Signal 8:438–443

    Article  PubMed  CAS  Google Scholar 

  121. Perluigi M, Poon HF, Maragos W, Pierce WM, Klein JB, Calabrese V, Cini C, De Marco C, Butterfield DA (2005) Proteomic analysis of protein expression and oxidative modification in R6/2 transgenic mice: a model of Huntington disease. Mol Cel Proteomics 4:1849–1861

    Article  CAS  Google Scholar 

  122. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    Article  PubMed  CAS  Google Scholar 

  123. Calabrese V, Scapagnini G, Ravagna A, Bella R, Butterfield DA, Calvani M, Pennisi G, Giuffrida Stella AM (2003) Disruption of thiol homeostasis and nitrosative stress in the cerebrospinal fluid of patients with active multiple sclerosis: evidence for a protective role of acetylcarnitine. Neurochem Res 28:1321–1328

    Article  PubMed  CAS  Google Scholar 

  124. Stamler JS, Hausladen A (1998) Oxidative modifications in nitrosative stress. Cell 78:931–936

    Article  Google Scholar 

  125. Carrell RW (2005) Cell toxicity and conformational disease. Trends Cell Biol 15:574–580

    Article  PubMed  CAS  Google Scholar 

  126. Hayden MR, Tyagi SC, Kerklo MM, Nicolls MR (2005) Type 2 diabetes mellitus as a conformational disease. JOP 6:287–302

    PubMed  Google Scholar 

  127. Cecchi C, Pensalfini A, Baglioni S, Fiorillo C, Caporale R, Formigli L, Liguri G, Stefani M (2006) Differing molecular mechanisms appear to underlie early toxicity of prefibrillar HypF-N aggregates to different cell types. FEBS J 273:2206–2222

    Article  PubMed  CAS  Google Scholar 

  128. Abdul HM, Calabrese V, Calvani M, Butterfield DA (2006) Acetyl-l-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloid-beta peptide 1-42-mediated oxidative stress and neurotoxicity: implications for Alzheimer’s disease. J Neurosci Res 84:398–408

    Article  PubMed  CAS  Google Scholar 

  129. Anfinsen CB (1972) The formation and stabilization of protein structure. Biochem J 128:737–749

    PubMed  CAS  Google Scholar 

  130. Qu K, Chen CP, Halliwell B, Moore PK, Wong PT (2006) Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke 37:889–893

    Article  PubMed  CAS  Google Scholar 

  131. Calabrese V, Maines MD (2006) Antiaging medicine: antioxidants and aging. Antioxid Redox Signal 8:362–364

    Article  PubMed  CAS  Google Scholar 

  132. Perluigi M, Joshi G, Sultana R, Calabrese V, De Marco C, Coccia R, Cini C, Butterfield DA (2006) In vivo protective effects of ferulic acid ethyl ester against amyloid-beta peptide 1-42-induced oxidative stress. J Neurosci Res 84:418–426

    Article  PubMed  CAS  Google Scholar 

  133. Calabrese V, Scapagnini G, Giuffrida Stella AM, Bates TE, Clark JB (2001) Mitocondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disordes and longevity. Neurochem Res 26:739–764

    Article  PubMed  CAS  Google Scholar 

  134. Calabrese V, Scapagnini G, Catalano C, Bates TE, Dirotta F, Micali G, Giuffrida Stella AM (2001) Induction of heat shock protein synthesis in human skin fibroblasts in response to oxidative stress: regulation by a natural antioxidant from rosemary extract. Int J Tissue React 23:121–128

    Google Scholar 

  135. Calabrese V, Raffaele R, Casentino E, Rizza V (1994) Changes in cerebrospinal fluid levels of malonaldehyde and glutathione reductase activity in multiple sclerosis. J Clin Pharmacol. Res 4:119–123

    Google Scholar 

  136. Calabrese V, Bella R, Testa D, Spadaro F, Scorfani A, Rizza V, Pennisi G (1998) Increased cerebrospinal fluid and plasma levels of ultraweak chemiluminescence are associated with changes in the thiol pool and lipid-soluble fluorescence in multiple sclerosis: The pathogenic role of oxidative stress. Drugs Exp Clin Res 24:125–131

    PubMed  CAS  Google Scholar 

  137. Scapagnini G, Ravagna A, Bella R, Colombrita C, Pennisi G, Calvani M, Alkon D, Calabrese V (2002) Long-term ethanol administration enhances age-dependent modulation of redox state in brain and peripheral organs of rat: protection by acetyl carnitine. Int J Tissue React 24:89–96

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of Italian Cofin 2000, FIRB RBNE01ZK8F, and by NIH grants to D.A.B. [AG-05119; AG-10836].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Calabrese.

Additional information

Special issue dedicated to John P. Blass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calabrese, V., Guagliano, E., Sapienza, M. et al. Redox Regulation of Cellular Stress Response in Aging and Neurodegenerative Disorders: Role of Vitagenes. Neurochem Res 32, 757–773 (2007). https://doi.org/10.1007/s11064-006-9203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9203-y

Keywords

Navigation