Skip to main content

Advertisement

Log in

Oxidative Damage in Rat Brain During Aging: Interplay Between Energy and Metabolic Key Target Proteins

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Aging is characterized by a gradual and continuous loss of physiological functions and responses particularly marked in the central nervous system. Reactive oxygen species (ROS) can react with all major biological macromolecules such as carbohydrates, nucleic acids, lipids, and proteins. Since proteins are the major components of biological systems and regulate multiple cellular pathways, oxidative damage of key proteins are considered to be the principal molecular mechanisms leading to age-related deficits. Recent evidences support the notion that a decrease of energy metabolism in the brain contribute to neuronal loss and cognitive decline associated with aging. In the present study we identified selective protein targets which are oxidized in aged rats compared with adult rats. Most of the oxidatively modified proteins we found in the present study are key proteins involved in energy metabolism and ATP production. Oxidative modification of these proteins was associated with decreased enzyme activities. In addition, we also found decreased levels of thiol reducing system. Our study demonstrated that oxidative damage to specific proteins impairs energy metabolism and ATP production thus contributing to shift neuronal cells towards a more oxidized environment which ultimately might compromise multiple neuronal functions. These results further confirm that increased protein oxidation coupled with decreased reducing systems are characteristic hallmarks of aging and aging-related degenerative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292:R18–R36

    CAS  PubMed  Google Scholar 

  2. Yap LP, Garcia JV, Han D, Cadenas E (2009) The energy-redox axis in aging and age-related neurodegeneration. Adv Drug Deliv Rev 61:1283–1298

    Article  CAS  PubMed  Google Scholar 

  3. Hagen TM (2003) Oxidative stress, redox imbalance, and the aging process. Antioxid Redox Signal 5:503–506

    Article  CAS  PubMed  Google Scholar 

  4. Stadtman ER (2004) Role of oxidant species in aging. Curr Med Chem 11:1105–1112

    CAS  PubMed  Google Scholar 

  5. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  PubMed  Google Scholar 

  6. Keller JN, Hanni KB, Markesbery WR (2000) Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech Ageing Dev 113:61–70

    Article  CAS  PubMed  Google Scholar 

  7. Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324(Pt 1):1–18

    CAS  PubMed  Google Scholar 

  8. Shacter E (2000) Protein oxidative damage. Methods Enzymol 319:428–436

    Article  CAS  PubMed  Google Scholar 

  9. Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  CAS  PubMed  Google Scholar 

  10. Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A 101:4003–4008

    Article  CAS  PubMed  Google Scholar 

  11. Witko-Sarsat V, Friedlander M, Capeillere-Blandin C et al (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313

    Article  CAS  PubMed  Google Scholar 

  12. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol Med 9:169–176

    Article  CAS  PubMed  Google Scholar 

  13. Nystrom T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311–1317

    Article  PubMed  Google Scholar 

  14. Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796

    Article  CAS  PubMed  Google Scholar 

  15. Sultana R, Perluigi M, Butterfield DA (2009) Oxidatively modified proteins in Alzheimer’s disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol 118:131–150

    Article  CAS  PubMed  Google Scholar 

  16. Sultana R, Perluigi M, Butterfield DA (2006) Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal 8:2021–2037

    Article  CAS  PubMed  Google Scholar 

  17. Butterfield DA, Sultana R (2008) Redox proteomics: understanding oxidative stress in the progression of age-related neurodegenerative disorders. Expert Rev Proteomics 5:157–160

    Article  CAS  PubMed  Google Scholar 

  18. Hensley K, Hall N, Subramaniam R et al (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65:2146–2156

    Article  CAS  PubMed  Google Scholar 

  19. Howard BJ, Yatin S, Hensley K et al (1996) Prevention of hyperoxia-induced alterations in synaptosomal membrane-associated proteins by N-tert-butyl-alpha-phenylnitrone and 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (Tempol). J Neurochem 67:2045–2050

    Article  CAS  PubMed  Google Scholar 

  20. Aksenova MV, Aksenov MY, Carney JM, Butterfield DA (1998) Protein oxidation and enzyme activity decline in old brown Norway rats are reduced by dietary restriction. Mech Ageing Dev 100:157–168

    Article  CAS  PubMed  Google Scholar 

  21. Perluigi M, Domenico FD, Butterfield DA, et al. (2010) Redox proteomics in aging rat brain: involvement of mithocondrial GSH status and mithocondrial oxidation in the aging process. J Neurosci Res (in press)

  22. Zheng J, Ramirez VD (1999) Rapid inhibition of rat brain mitochondrial proton F0F1-ATPase activity by estrogens: comparison with Na+ , K+ -ATPase of porcine cortex. Eur J Pharmacol 368:95–102

    Article  CAS  PubMed  Google Scholar 

  23. Oliver IT (1955) A spectrophotometric method for the determination of creatine phosphokinase and myokinase. Biochem J 61:116–122

    CAS  PubMed  Google Scholar 

  24. Dzeja PP, Vitkevicius KT, Redfield MM, Burnett JC, Terzic A (1999) Adenylate kinase-catalyzed phosphotransfer in the myocardium: increased contribution in heart failure. Circ Res 84:1137–1143

    CAS  PubMed  Google Scholar 

  25. Costabeber E, Kessler A, Severo Dutra-Filho C, de Souza Wyse AT, Wajner M, Wannmacher CM (2003) Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. Int J Dev Neurosci 21:111–116

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Daosukho C, Opii WO et al (2006) Redox proteomic identification of oxidized cardiac proteins in adriamycin-treated mice. Free Radic Biol Med 41:1470–1477

    Article  CAS  PubMed  Google Scholar 

  27. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  CAS  PubMed  Google Scholar 

  28. Smith CD, Carney JM, Starke-Reed PE et al (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88:10540–10543

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki YJ, Carini M, Butterfield DA (2009) Protein carbonylation. Antioxid Redox Signal

  30. Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE (2005) Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol 57:695–703

    Article  CAS  PubMed  Google Scholar 

  31. Calabrese V, Guagliano E, Sapienza M et al (2007) Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem Res 32:757–773

    Article  CAS  PubMed  Google Scholar 

  32. Calabrese V, Cornelius C, Mancuso C et al (2008) Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res 33:2444–2471

    Article  CAS  PubMed  Google Scholar 

  33. Cini M, Moretti A (1995) Studies on lipid peroxidation and protein oxidation in the aging brain. Neurobiol Aging 16:53–57

    Article  CAS  PubMed  Google Scholar 

  34. Dogru-Abbasoglu S, Tamer-Toptani S, Ugurnal B, Kocak-Toker N, Aykac-Toker G, Uysal M (1997) Lipid peroxidation and antioxidant enzymes in livers and brains of aged rats. Mech Ageing Dev 98:177–180

    Article  CAS  PubMed  Google Scholar 

  35. Boyd-Kimball D, Sultana R, Poon HF et al (2005) Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid beta-peptide (1–42) into rat brain: implications for Alzheimer’s disease. Neuroscience 132:313–324

    Article  CAS  PubMed  Google Scholar 

  36. Sultana R, Poon HF, Cai J et al (2006) Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiol Dis 22:76–87

    Article  CAS  PubMed  Google Scholar 

  37. Reed T, Perluigi M, Sultana R et al (2008) Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol Dis 30:107–120

    Article  CAS  PubMed  Google Scholar 

  38. Poon HF, Frasier M, Shreve N, Calabrese V, Wolozin B, Butterfield DA (2005) Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice–a model of familial Parkinson’s disease. Neurobiol Dis 18:492–498

    Article  CAS  PubMed  Google Scholar 

  39. Sheline CT, Choi DW (1998) Neuronal death in cultured murine cortical cells is induced by inhibition of GAPDH and triosephosphate isomerase. Neurobiol Dis 5:47–54

    Article  CAS  PubMed  Google Scholar 

  40. Butterfield DA, Gnjec A, Poon HF et al (2006) Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer’s disease: an initial assessment. J Alzheimers Dis 10:391–397

    CAS  PubMed  Google Scholar 

  41. Bajo M, Fruehauf J, Kim SH, Fountoulakis M, Lubec G (2002) Proteomic evaluation of intermediary metabolism enzyme proteins in fetal Down’s syndrome cerebral cortex. Proteomics 2:1539–1546

    Article  CAS  PubMed  Google Scholar 

  42. Pocernich CB, Poon HF, Boyd-Kimball D et al (2005) Proteomic analysis of oxidatively modified proteins induced by the mitochondrial toxin 3-nitropropionic acid in human astrocytes expressing the HIV protein tat. Brain Res Mol Brain Res 133:299–306

    Article  CAS  PubMed  Google Scholar 

  43. Poon HF, Vaishnav RA, Butterfield DA, Getchell ML, Getchell TV (2005) Proteomic identification of differentially expressed proteins in the aging murine olfactory system and transcriptional analysis of the associated genes. J Neurochem 94:380–392

    Article  CAS  PubMed  Google Scholar 

  44. Perluigi M, Poon HF, Maragos W et al (2005) Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: a model of Huntington disease. Mol Cell Proteomics 4:1849–1861

    Article  CAS  PubMed  Google Scholar 

  45. Poon HF, Shepherd HM, Reed TT et al (2006) Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes: Mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis. Neurobiol Aging 27:1020–1034

    Article  CAS  PubMed  Google Scholar 

  46. Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 32:1050–1060

    Article  CAS  PubMed  Google Scholar 

  47. Butterfield DA, Kanski J (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122:945–962

    Article  CAS  PubMed  Google Scholar 

  48. Opii WO, Joshi G, Head E et al (2008) Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioral enrichment: relevance to Alzheimer’s disease. Neurobiol Aging 29:51–70

    Article  CAS  PubMed  Google Scholar 

  49. Poon HF, Castegna A, Farr SA et al (2004) Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain. Neuroscience 126:915–926

    Article  CAS  PubMed  Google Scholar 

  50. Butterfield DA, Koppal T, Howard B et al (1998) Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-alpha-phenylnitrone and vitamin E. Ann N Y Acad Sci 854:448–462

    Article  CAS  PubMed  Google Scholar 

  51. Castegna A, Aksenov M, Aksenova M et al (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33:562–571

    Article  CAS  PubMed  Google Scholar 

  52. Schuyler GT, Yarbrough LR (1990) Effects of age on myosin and creatine kinase isoforms in left ventricles of Fischer 344 rats. Mech Ageing Dev 56:23–38

    Article  CAS  PubMed  Google Scholar 

  53. Carney JM, Starkereed PE, Oliver CN et al (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme-activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-Tert-Butyl-Alpha-Phenylnitrone. P Natl Acad Sci USA 88:3633–3636

    Article  CAS  Google Scholar 

  54. Dzeja PP, Bortolon R, Perez-Terzic C, Holmuhamedov EL, Terzic A (2002) Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc Natl Acad Sci U S A 99:10156–10161

    Article  CAS  PubMed  Google Scholar 

  55. Nicholls D (2002) Mitochondrial bioenergetics, aging, and aging-related disease. Sci Aging Knowl Environ. 2002:pe12

  56. Small GW, Bookheimer SY, Thompson PM et al (2008) Current and future uses of neuroimaging for cognitively impaired patients. Lancet Neurol 7:161–172

    Article  PubMed  Google Scholar 

  57. Yong SW, Yoon JK, An YS, Lee PH (2007) A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol 14:1357–1362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

It is a great pleasure for us to contribute to the special issue of Neurochemical Research dedicated to Abel Lajtha. He has been the Editor in Chief of the Journal for so many years and has contributed so much to the scientific success of the Journal. We are very grateful to him

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Perluigi.

Additional information

Special Issue: In Honor of Dr. Abel Lajtha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Domenico, F., Perluigi, M., Butterfield, D.A. et al. Oxidative Damage in Rat Brain During Aging: Interplay Between Energy and Metabolic Key Target Proteins. Neurochem Res 35, 2184–2192 (2010). https://doi.org/10.1007/s11064-010-0295-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0295-z

Keywords

Navigation