Skip to main content
Log in

A supply and demand economic order quantity inventory model under pythagorean fuzzy environment

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

This article deals with a noble application of Pythagorean fuzzy set (PFS). In fuzzy set theory in particular for intuitionistic fuzzy set (IFS) we are quite familiar to pass through Attanassov’s concept. But to deal with non-standard fuzzy set, PFS plays an important role in many decision making problems which dominate Attanassov’s IFS. The main aim of this study is to show the effectiveness and applicability of the PFS in decision making under uncertain environment through inventory problems. Also, this works brings a solution to the situation when the sum of the membership and non-membership degree is greater than one i.e. when IFS fails. The primary goal of this study is to show how PFS has a wider space of membership degrees and it is more capable of handling uncertain information than any other fuzzy set. Here, we have considered an Economic Order Quantity (EOQ) model with customer’s income dependent demand of end-item and price-dependent supply of input component. We explicitly specify the demand as a function of customers’ income and unit selling price. We develop a crisp model for cost minimization problem first then we split the model into general fuzzy, intuitionistic fuzzy and Pythagorean fuzzy environment respectively. However, PFS lacks mathematical solution procedure. Employing the score function, we optimize the cost function using the Yager’s ranking index method. Moreover, our numerical results show the superiority of PFS with respect to the traditional model and other fuzzy environments. Finally, sensitivity analysis and graphical illustrations are made to justify the model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Chen S-C, Min J, Teng J-T and Li F 2016 Inventory and shelf-space optimization for fresh produce with expiration date under freshness-and-stock-dependent demand rate. J. Oper. Res. Soc. 67(6): 884–896.

    Article  Google Scholar 

  2. Mahata G C 2016 Optimal ordering policy with trade credit and variable deterioration for fixed lifetime products. Int. J. Oper. Res. 25(3): 307–326

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai R and Kendall G A model for fresh produce shelf-space allocation and inventory management with freshness-condition-dependent demand. INFORMS J. Comput. 20(1): 78–85

    Article  MathSciNet  MATH  Google Scholar 

  4. Wu J, Ouyang L-Y, Cárdenas-Barrón L E and Goyal S K Optimal credit period and lot size for deteriorating items with expiration dates under two-level trade credit financing. Eur. J. Oper. Res. 237(3): 898–908

    Article  MathSciNet  MATH  Google Scholar 

  5. Sarkar B 2012 An inventory model with reliability in an imperfect production process. Appl. Math. Comput. 218(9): 4881–4891

    MathSciNet  MATH  Google Scholar 

  6. De S K, Sana S S and Goswami A 2014 An eoq model for phase inventory with induced demand and periodic cycle time. J. Ind. Eng.

  7. Kumar R S, De S and Goswami A 2012 Fuzzy eoq models with ramp type demand rate, partial backlogging and time dependent deterioration rate. Int. J. Math. Oper. Res. 4(5): 473–502

    Article  MathSciNet  MATH  Google Scholar 

  8. Pal S, Mahapatra G and Samanta G 2014 An epq model of ramp type demand with weibull deterioration under inflation and finite horizon in crisp and fuzzy environment. Int. J. Prod. Econ. 156: 159–166

    Article  Google Scholar 

  9. Hsieh T-P and Dye C-Y 2013 A production–inventory model incorporating the effect of preservation technology investment when demand is fluctuating with time. J. Comput. Appl. Math. 239: 25–36

    Article  MathSciNet  MATH  Google Scholar 

  10. Zadeh L A 1965 Fuzzy sets. Inf. Control 8(3): 338–353

    Article  MATH  Google Scholar 

  11. Bellman R E and Zadeh L A 1970 Decision-making in a fuzzy environment. Manag. Sci. 17(4): B–141

  12. De S K and Goswami A 2006 An eoq model with fuzzy inflation rate and fuzzy deterioration rate when a delay in payment is permissible. Int. J. Syst. Sci. 37(5): 323–335

    Article  MATH  Google Scholar 

  13. Mahata G C and Mahata P 2011 Analysis of a fuzzy economic order quantity model for deteriorating items under retailer partial trade credit financing in a supply chain. Math. Comput. Model. 53(9): 1621–1636

    Article  MathSciNet  MATH  Google Scholar 

  14. Soni H N and Joshi M, A fuzzy framework for coordinating pricing and inventory policies for deteriorating items under retailer partial trade credit financing. Comput. Ind. Eng. 66(4): 865–878

    Article  Google Scholar 

  15. Takeuti G and Titani S 1984 Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Symb. Log. 49(03): 851–866

    Article  MathSciNet  MATH  Google Scholar 

  16. Atanassov K T 1986 Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1): 87–96

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen S-M and Tan J-M 1994 Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst. 67(2): 163–172

    Article  MathSciNet  MATH  Google Scholar 

  18. Dymova L and Sevastjanov P 2011 Operations on intuitionistic fuzzy values in multiple criteria decision making. Sci. Res. Inst. Math. Comput. Sci. 10(1): 41–48

    Google Scholar 

  19. De S K and Sana S S 2014 A multi-periods production–inventory model with capacity constraints for multi-manufacturers—a global optimality in intuitionistic fuzzy environment. Appl. Math. Comput. 242: 825–841

    MathSciNet  MATH  Google Scholar 

  20. De S K and Sana S S 2015 Backlogging eoq model for promotional effort and selling price sensitive demand—an intuitionistic fuzzy approach. Ann. Oper. Res. 233(1): 57–76

    Article  MathSciNet  MATH  Google Scholar 

  21. Razmi J, Jafarian E and Amin S H 2016 An intuitionistic fuzzy goal programming approach for finding pareto-optimal solutions to multi-objective programming problems. Expert Syst. Appl. 65: 181–193

    Article  Google Scholar 

  22. Chakrabortty S, Pal M, and Nayak P K 2013 Intuitionistic fuzzy optimization technique for pareto optimal solution of manufacturing inventory models with shortages. Eur. J. Oper. Res. 228(2): 381–387

    Article  MathSciNet  MATH  Google Scholar 

  23. De S K, Goswami A and Sana S S 2014 An interpolating by pass to pareto optimality in intuitionistic fuzzy technique for a eoq model with time sensitive backlogging. Appl. Math. Comput. 230: 664–674

    MathSciNet  MATH  Google Scholar 

  24. Karmakar S, De S K and Goswami A 2017 A pollution sensitive dense fuzzy economic production quantity model with cycle time dependent production rate. J. Clean. Prod. 154: 139–150

    Article  Google Scholar 

  25. Karmakar S, De S K and Goswami A 2018 A pollution sensitive remanufacturing model with waste items: triangular dense fuzzy lock set approach. J. Clean. Prod. 187: 789–803

    Article  Google Scholar 

  26. Kumar R S 2018 Modelling a type-2 fuzzy inventory system considering items with imperfect quality and shortage backlogging. Sādhanā 43(10): 1–10

    Article  MathSciNet  Google Scholar 

  27. De S K and Mahata G C 2019 An epq model for three-layer supply chain with partial backordering and disruption: triangular dense fuzzy lock set approach. Sādhanā 44(8): 1–15

    Article  MathSciNet  Google Scholar 

  28. Rahaman M, Mondal S P, Alam S and Goswami A 2021 Synergetic study of inventory management problem in uncertain environment based on memory and learning effects. Sādhanā 46(1): 1–20

    Article  MathSciNet  Google Scholar 

  29. Mahata G C, De S K, Bhattacharya K and Maity S 2021 Three-echelon supply chain model in an imperfect production system with inspection error, learning effect, and return policy under fuzzy environment. Int. J. Syst. Sci. Oper. Logist. 1–21

  30. Kumar M, Kumar R S and Saha A K 2022 Continuous review inventory system for intuitionistic fuzzy random demand under service level constraint. Sādhanā 47(2): 1–13

    Article  MathSciNet  Google Scholar 

  31. De S K, Bhattacharya K, Bhattacharya P P, Nayak P K and Joardar S 2022 Solution of a pollution sensitive supply chain model for novel strategic fuzzy game via bernoulli trial. Comput. Oper. Res. 144: 105846

    Article  MATH  Google Scholar 

  32. Bhattacharya P P, Bhattacharya K and De S K A study on pollution sensitive sponge iron based production transportation model under fuzzy environment. Decis. Mak. Appl. Manag. Eng.

  33. Karmakar S and De S K 2022 A study of an eoq model where the demand depends on time and varying number of tourists using fuzzy triangular norms. J. Ambient Intell. Human. Comput. 1–16

  34. Yager R R 2013 Pythagorean fuzzy subsets. In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS)

  35. Peng X and Yang Y 2015 Some results for pythagorean fuzzy sets. Int. J. Intell. Syst. 30(11): 1133–1160

    Article  MathSciNet  Google Scholar 

  36. Li D and Zeng W 2018 Distance measure of pythagorean fuzzy sets. Int. J. Intell. Syst. 33(2): 348–361

    Article  MathSciNet  Google Scholar 

  37. Bryniarska A 2020 The n-pythagorean fuzzy sets. Symmetry 12(11): 1772

    Article  Google Scholar 

  38. Kumar Adak A and Darvishi Salookolaei D 2021 Some properties of rough pythagorean fuzzy sets. Fuzzy Inf. Eng. 13(4): 420–435

    Article  Google Scholar 

  39. Akram M, Luqman A and Alcantud J C R 2022 An integrated electre-i approach for risk evaluation with hesitant pythagorean fuzzy information. Expert Syst. Appl. 200: 116945

    Article  Google Scholar 

  40. Teksan Z M and Geunes J 2018 An eoq model with price-dependent supply and demand. Int. J. Prod. Econ. 178: 22–33

    Article  Google Scholar 

  41. Yager R R 1981 A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24(2): 143–161

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor-in-chief, corresponding editor and the anonymous reviewers for their valuable and constructive comments which have led to a significant improvement in the presentations of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Snigdha Karmakar or Sujit Kumar De.

Appendices

Appendix

A

The feasible region of PFS and IFS are shown in figure 5. [Here (.)/(.) stands for either or]

Figure 5
figure 5

Feasible region of IFS and PFS.

Definition A.1

(Yager [34]) The set of Pythagorean membership grades is greater than the set of intuitionistic membership grades.

Example A.1

Let a point (ab) is an intuitionistic membership grade. So, \(a,b \in [0,1]\) implies \(a+b \le 1\). For any \(a,b \in [0,1]\), \(a^{2}\le a\), \(b^{2} \le b\) which implies \(a^{2}+b^{2} \le 1\). So, any intuitionistic membership grade is a pythagorean membership grade. But, the point \((\frac{\sqrt{3}}{2},\frac{1}{2})\) we see that \((\frac{\sqrt{3}}{2})^{2}+(\frac{1}{2})^{2}=1\), thus this is a pythagorean membership grade. however since \(\frac{\sqrt{3}}{2}+\frac{1}{2}>1\) this is not an intuitionistic membership grade.

From figure 5 we see that intuitionistic (non)membership grades are all points under the line \({\mu (x)}+{\nu (x)} = 1\) and Pythagorean (non)membership grades are all points with \({\mu ^{2}(x)}+{\nu ^{2}(x)} \le 1\). Hence Pythagorean fuzzy set represents a larger body of non-standard membership grades than intuitionistic membership grades.

B Particular case

If there is no expiration date i.e. if \(m\rightarrow \infty \), then \(\lim \limits _{m\rightarrow \infty } \bigg [\frac{1+m}{T}log\Big (\frac{1+m}{1+m-T}\Big )\bigg ]=\lim \limits _{m\rightarrow \infty } \frac{1+m}{1+m-T}=1\) (using L’Hospital rule). So, \(Q_{2}=D(1+m)log\Big (\frac{1+m}{1+m-T}\Big )=DT ~\text{ as }~ m\rightarrow \infty \).

Now, \(\lim \limits _{m\rightarrow \infty } \bigg [\frac{(1+m)^2}{2}log\Big (\frac{1+m}{1+m-T}\Big )-\frac{(1+m)T}{2}\bigg ]=\frac{1}{2}\lim \limits _{m\rightarrow \infty } \bigg [\frac{log\big (\frac{1+m}{1+m-T}\big )-\frac{T}{1+m}}{\frac{1}{(1+m)^2}}\bigg ]=\frac{T^2}{4}\) (using L’Hospital rule).

Therefore, \(\lim \limits _{m\rightarrow \infty } h_{e}D \bigg [\frac{(1+m)^2}{2}log\Big (\frac{1+m}{1+m-T}\Big )-\frac{(1+m)T}{2}+\frac{T^2}{4}\bigg ]=\frac{h_{e}DT^{2}}{2}\)

C Selection of \(\alpha \)-cut intervals for IFS

We have the score function of the fuzzy parameters \(d_{i}\) developed in section 5

$$\begin{aligned} \omega (d_{i})= \left\{ \begin{array}{ll} \sqrt{\frac{d_{i}-d_{i1}}{d_{i2}-d_{i1}}}-\sqrt{\frac{d_{i2}-d_{i}}{d_{i2}-{d_{i1}}^{'}}} &{} \sigma _{1i} \leqslant d_{i} \leqslant \sigma _{2i} \\ \sqrt{\frac{d_{i3}-d_{i}}{d_{i3}-d_{i2}}}-\sqrt{\frac{d_{i}-d_{i2}}{{d_{i3}}^{'}-d_{i2}}} &{} \sigma _{2i} \leqslant d_{i}\leqslant \sigma _{3i} \\ 0 &{} \hbox {otherwise} \end{array} \right. \end{aligned}$$
(C.1)

Now, to get \(\alpha \)-cut intervals we write

$$\begin{aligned}&\sqrt{\frac{d_{i}-d_{i1}}{d_{i2}-d_{i1}}}-\sqrt{\frac{d_{i2}-d_{i}}{d_{i2}-{d_{i1}}^{'}}} \ge \alpha \nonumber \\&\quad \Rightarrow \sqrt{(d_{i}-d_{i1})(d_{i2}-{d_{i1}}^{'})}-\sqrt{(d_{i2}-d_{i})(d_{i2}-d_{i1})}\nonumber \\&\qquad \ge \alpha \sqrt{(d_{i2}-d_{i1})(d_{i2}-{d_{i1}}^{'})} \nonumber \\&\quad \Rightarrow Ad_{i}^{2}-2Bd_{i}+C \ge 0, \end{aligned}$$
(C.2)

where

$$\begin{aligned} \begin{aligned} A=&\{({d_{i1}}+{d_{i1}}^{'})^{2}+4d_{i2}(d_{i2}-d_{i1}-d_{i1}^{'})\},\\ B=&2(d_{i2}-d_{i1}^{'})(d_{i2}-d_{i1}^{'})(d_{i2}+d_{i1})\\&-(d_{i1}-d_{i1}^{'}) \{(d_{i2}^{2}-2d_{i1}d_{i2}+d_{i1}d_{i1}^{'})\\&-\alpha ^{2}(d_{i2}-d_{i1})(d_{i2}-d_{i1}^{'})\}\\ C=&\{(d_{i2}^{2}-2d_{i1}d_{i2}+d_{i1}d_{i1}^{'})-\alpha ^{2}(d_{i2}-d_{i1})(d_{i2} -d_{i1}^{'})\}^{2}\\&+4(d_{i2}-d_{i1}^{'})(d_{i2}-d_{i1}^{'})\\ \end{aligned} \end{aligned}$$

From (C.2), we get

$$\begin{aligned} \Rightarrow d_{i} \ge \frac{B}{A} + \frac{\sqrt{B^{2}-AC}}{A} ~\text{ or }~ d_{i} \le \frac{B}{A} - \frac{\sqrt{B^{2}-AC}}{A} \end{aligned}$$
(C.3)

Again,

$$\begin{aligned} \sqrt{\frac{d_{i3}-d_{i}}{d_{i3}-d_{i2}}}-\sqrt{\frac{d_{i}-d_{i2}}{{d_{i3}}^{'}-d_{i2}}} \ge \alpha \end{aligned}$$

implies

$$\begin{aligned}&\sqrt{(d_{i3}-d_{i})(d_{i3}-d_{i2})}-\sqrt{(d_{i}-d_{i2})({d_{i3}}^{'}-d_{i2})}\nonumber \\&\qquad \ge \alpha \sqrt{(d_{i3}-d_{i2})({d_{i3}}^{'}-d_{i2})} \nonumber \\&\quad \Rightarrow A^{'}d_{i}^{2}-2B^{'}d_{i}+C^{'} \ge 0, \end{aligned}$$
(C.4)

where

$$\begin{aligned} \begin{aligned} A^{'}=&\{({d_{i3}}+{d_{i3}}^{'})^{2}+4d_{i2}(d_{i2}-d_{i3}-d_{i3}^{'})\}\\ B^{'}=&2(d_{i2}-d_{i3})(d_{i2}-{d_{i3}}^{'})(d_{i2}+d_{i3})\\&-(d_{i3}-d_{i3}^{'})\{(d_{i2}^{2}-2d_{i3}d_{i2}+d_{i3}d_{i3}^{'})\\&-\alpha ^{2}(d_{i2}-d_{i3})(d_{i2}-d_{i3}^{'})\}\\ C^{'}=&\{(d_{i2}^{2}-2d_{i3}d_{i2}+d_{i3}d_{i3}^{'})-\alpha ^{2}(d_{i2}-d_{i3})(d_{i2}-d_{i3}^{'})\}^{2}\\&+4(d_{i2}-d_3^{'})(d_{i2}-d_{i3}^{'}) \end{aligned} \end{aligned}$$

From (C.4), we get

$$\begin{aligned} \Rightarrow d_{i} \ge \frac{B^{'}}{A^{'}} + \frac{\sqrt{{B^{'}}^{2}-A^{'}C^{'}}}{A^{'}} ~\text{ or }~ d_{i} \le \frac{B^{'}}{A^{'}} - \frac{\sqrt{{B^{'}}^{2}-A^{'}C^{'}}}{A^{'}} \end{aligned}$$

Let \(\sigma _{1i}=\frac{B}{A} - \frac{\sqrt{B^{2}-AC}}{A}\), \(\sigma _{2i}=\frac{B}{A} + \frac{\sqrt{B^{2}-AC}}{A}\), \(\sigma _{3i}=\frac{B^{'}}{A^{'}} - \frac{\sqrt{{B^{'}}^{2}-A^{'}C^{'}}}{A^{'}} \) and \(\sigma _{4i}=\frac{B^{'}}{A^{'}} + \frac{\sqrt{{B^{'}}^{2}-A^{'}C^{'}}}{A^{'}}\)

Figure 6
figure 6

(a), (b), (c), (d), (e), (f) All possible intervals of \(d_{i}\)’s.

Therefore from above we can write \(\sigma _{1i}\ge d_{i} \ge \sigma _{2i}\) and \(\sigma _{3i} \ge d_{i} \ge \sigma _{4i}\). The possible intervals are

  1. (a)

    \({d_{i1}}^{'} \le d_{i} \le \sigma _{1i}\) and \(\sigma _{2i} \le d_{i} \le d_{i2}\)    (b) \({d_{i1}}^{'} \le d_{i} \le \sigma _{1i}\) and \(d_{i2} \le d_{i} \le \sigma _{3i} \)

  2. (c)

    \({d_{i1}}^{'} \le d_{i} \le \sigma _{1i}\) and \(\sigma _{4i} \le d_{i} \le {d_{i3}}^{'}\)   (d) \(\sigma _{2i} \le d_{i} \le d_{i2}\) and \(d_{i2} \le d_{i} \le \sigma _{3i}\) i.e. \(\sigma _{2i} \le d_{i} \le \sigma _{3i}\)

  3. (e)

    \(\sigma _{2i} \le d_{i} \le d_{i2}\) and \(\sigma _{4i} \le d_{i} \le {d_{i3}}^{'}\)    (f) \(d_{i2} \le d_{i} \le \sigma _{3i}\) and \(\sigma _{4i} \le d_{i} \le {d_{i3}}^{'}\)

Figures 6(a), 6(b), 6(c), 6(d), 6(e), 6(f) show the graphical illustrations of possible intervals of \(d_{i}\)’s.

Therefore, the possible defuzzifying integrals are

  1. (a)

    \(I(d_{i}) = \frac{1}{2} \int _{0}^{1}[{d_{i1}}^{'} + \sigma _{1i}]d\alpha + \frac{1}{2} \int _{0}^{1}[\sigma _{2i} + d_{i2}]d\alpha \);  (b) \(I(d_{i}) = \frac{1}{2} \int _{0}^{1}[{d_{i1}}^{'} + \sigma _{1i}]d\alpha + \frac{1}{2}\int _{0}^{1}[d_{i2}+ \sigma _{3i}]d\alpha \)

  2. (c)

    \(I(d_{i}) = \frac{1}{2} \int _{0}^{1}[{d_{i1}}^{'} + \sigma _{1i}]d\alpha + \frac{1}{2}\int _{0}^{1}[\sigma _{4i} + {d_{i3}}^{'}]d\alpha \)   (d) \(I(d_{i}) = \frac{1}{2} \int _{0}^{1}[\sigma _{2i} + d_{i2}]d\alpha + \frac{1}{2}\int _{0}^{1}[d_{i2} + \sigma _{3i}]d\alpha \)

  3. (e)

    \(I(d_{i}) = \frac{1}{2} \int _{0}^{1}[\sigma _{2i} + d_{i2}]d\alpha + \frac{1}{2}\int _{0}^{1}[\sigma _{4i} + {d_{i3}}^{'}]d\alpha \)    (f) \(I(d_{i}) = \frac{1}{2} \int _{0}^{1}[d_{i2} + \sigma _{3i}]d\alpha + \frac{1}{2}\int _{0}^{1}[\sigma _{4i} + {d_{i3}}^{'}]d\alpha \)

Let us take as limiting case: \({d_{i1}}^{'} \rightarrow {d_{i1}}\) and \({d_{i3}}^{'}\rightarrow {d_{i3}}\). We get

$$\begin{aligned} \begin{aligned} A^{'}&=\{(2{d_{i3}})^{2}+4d_{i2}(d_{i2}-2d_{i3})\} \rightarrow 4(d_{i3}-d_{i2})^{2},~\\&\quad B^{'}=2(d_{i2}-d_{i3})^{2}(d_{i2}+d_{i3}) \rightarrow 2(d_{i3}-d_{i2})^{2}(d_{i3}+d_{i2})\\ C^{'}&=\{(d_{i2}^{2}-2d_{i3}d_{i2}+d_{i3}^{2})-\alpha ^{2}(d_{i2}-d_{i3})(d_{i2}-d_{i3})\}^{2}\\&\quad +4(d_{i2}-d_{3})(d_{i2}-d_{i3})\\&\rightarrow (d_{i3}-d_{i2})^{2}[(1-{\alpha ^{2}}^{2})^{2}(d_{i3}-d_{i2})^{2}+4d_{i2}d_{i3}]\\ \end{aligned} \end{aligned}$$

D Crisp converging test for the proposed IFS

We take the limits of \(d_{i1} \rightarrow d_{i2}\) and \(d_{i3} \rightarrow d_{i2}\). So, \(\frac{B^{'}}{A^{'}}\rightarrow \frac{2(d_{i3}-d_{i2})^{2}(d_{i3}+d_{i2})}{4(d_{i3}-d_{i2})^{2}} \rightarrow d_{i2}\)

$$\begin{aligned} \begin{aligned}&\frac{\sqrt{{B^{'}}^{2}-A^{'}C^{'}}}{A^{'}} \rightarrow \frac{\sqrt{4(d_{i3}-d_{i2})^{4}(d_{i3}+d_{i2})^{2}}-4(d_{i3}-d_{i2})^{2}(d_{i3}-d_{i2})^{2} [(1-{\alpha ^{2}}^{2})^{2}(d_{i3}-d_{i2})^{2}+4d_{i2}d_{i3}}{4(d_{i3}-d_{i2})^{2}}\\&\quad \rightarrow \frac{\sqrt{(d_{i3}+d_{i2})^{2}}-[(1-{\alpha ^{2}}^{2})^{2}(d_{i3}-d_{i2})^{2}+4d_{i2}d_{i3}}{2} \rightarrow \frac{\sqrt{(2d_{i2})^{2}-(4d_{i2}d_{i2})}}{2} \rightarrow 0 \end{aligned} \end{aligned}$$

Similarly, \(\frac{B}{A} \rightarrow d_{i2}, ~\text{ and }~\frac{\sqrt{{B}^{2}-AC}}{A} \rightarrow \frac{\sqrt{(2d_{i2})^{2}-(4d_{i2}d_{i2})}}{2} \rightarrow 0\)

Therefore, \(\sigma _{1i} \rightarrow \sigma _{2i} \rightarrow \sigma _{3i} \rightarrow \sigma _{4i} \rightarrow d_{i2}\). Hence, the possible defuzzifying limiting integrals are

  1. 1.

    \(I(d_{i}) = \frac{1}{2} \int _{0}^{1}[{d_{i1}}^{'} + \sigma _{1i}]d\alpha + \frac{1}{2} \int _{0}^{1}[\sigma _{2i} + d_{i2}]d\alpha \rightarrow 2d_{i2}\)

  2. 2.

    \(I(d_{i}) = \frac{1}{2} \int _{0}^{1}[{d_{i1}}^{'} + \sigma _{1i}]d\alpha + \frac{1}{2}\int _{0}^{1}[d_{i2}+ \sigma _{3i}]d\alpha \rightarrow 2d_{i2}\)

  3. 3.

    \(I(d_{i}) = \frac{1}{2} \int _{0}^{1}[{d_{i1}}^{'} + \sigma _{1i}]d\alpha + \frac{1}{2}\int _{0}^{1}[\sigma _{4i} + {d_{i3}}^{'}]d\alpha \rightarrow 2d_{i2}\)

  4. 4.

    \(I(d_{i}) = \frac{1}{2} \int _{0}^{1}[\sigma _{2i} + d_{i2}]d\alpha + \frac{1}{2}\int _{0}^{1}[d_{i2} + \sigma _{3i}]d\alpha \rightarrow d_{i2}\)

  5. 5.

    \(I(d_{i}) = \frac{1}{2} \int _{0}^{1}[\sigma _{2i} + d_{i2}]d\alpha + \frac{1}{2}\int _{0}^{1}[\sigma _{4i} + {d_{i3}}^{'}]d\alpha \rightarrow 2d_{i2}\)

  6. 6.

    \(I(d_{i}) = \frac{1}{2} \int _{0}^{1}[d_{i2} + \sigma _{3i}]d\alpha + \frac{1}{2}\int _{0}^{1}[\sigma _{4i} + {d_{i3}}^{'}]d\alpha \rightarrow 2d_{i2}\)

Thus we accept the integral \(I(d_{i}) = \frac{1}{2} \int _{0}^{1}[\sigma _{2i} + d_{i2}]d\alpha + \frac{1}{2}\int _{0}^{1}[d_{i2} + \sigma _{3i}]d\alpha \rightarrow d_{i2}\)

E Crisp converging test for PFS

Here we shall take the index values of the proposed PFS parameters in terms of \(\delta _{ij}\)’s and \(\lambda _{ij}\)’s defined in section (8). Let us take the index value for the fuzzy parameters \({\tilde{K}}\) as

$$\begin{aligned} \begin{aligned} I(K)&=\frac{\lambda ^{'}}{2}\int _{0}^{1}\Big [\left( \delta _{16}+\frac{\alpha }{\lambda _{16}}\right) ^{\lambda } +\left( \delta _{36}-\frac{\alpha }{\lambda _{26}}\right) ^{\lambda }\Big ]d\alpha \\&=\frac{\lambda ^{'}}{2(1+\lambda )}\bigg [\lambda _{16}\Big \{\left( \delta _{16}+\frac{1}{\lambda _{16}}\right) ^{1+\lambda } -\delta _{16}^{1+\lambda }\Big \}\\&\quad -\lambda _{26}\Big \{(\delta _{36} -\frac{1}{\lambda _{26}})^{1+\lambda }-\delta _{36}^{1+\lambda }\Big \}\bigg ] \end{aligned} \end{aligned}$$

Now, as \(p_{1}^{'}\rightarrow p_{1}\) and \(p_{3}^{'}\rightarrow p_{3}\) we have

$$\begin{aligned} \begin{aligned} I(K)&\rightarrow \frac{\lambda ^{'}}{2(1+\lambda )}\bigg [\frac{2}{p_{2}-p_{1}}\Big \{p_{2}^{1+\lambda } -\left( \frac{p_{1}+p_{2}}{2}\right) ^{1+\lambda }\Big \}\\&\quad -\frac{2}{p_{3}-p_{2}}\Big \{p_{2}^{1+\lambda } -\left( \frac{p_{2}+p_{3}}{2}\right) ^{1+\lambda }\Big \}\bigg ] \end{aligned} \end{aligned}$$

Also for \(p_{1}\rightarrow p_{2}\) and \(p_{3}\rightarrow p_{2}\), we get \(I(K) = \lambda ^{'}p_{2}^{\lambda } \Rightarrow \) crisp supply rate Again, let us take the index value of the fuzzy demand rate as

$$\begin{aligned} \begin{aligned} I(D)&=\frac{d_{0}E^{\delta }}{2}\int _{0}^{1}\Big [\left( \delta _{37}-\frac{\alpha }{\lambda _{27}}\right) ^{-\lambda } +\left( \delta _{17}+\frac{\alpha }{\lambda _{17}}\right) ^{-\lambda }\Big ]d\alpha \\&=\frac{d_{0}E^{\delta }}{2(1-\lambda )}\bigg [\lambda _{17}\Big \{\left( \delta _{17} +\frac{1}{\lambda _{17}}\right) ^{1-\lambda }-\delta _{17}^{1-\lambda }\Big \}\\&\quad -\lambda _{27}\Big \{\left( \delta _{37}-\frac{1}{\lambda _{27}}\right) ^{1-\lambda }-\delta _{37}^{1-\lambda }\Big \}\bigg ] \end{aligned} \end{aligned}$$

Thus for \(s_{1}^{'}\rightarrow s_{1}\) and \(s_{3}^{'}\rightarrow s_{3}\) we have

$$\begin{aligned} \begin{aligned} I(D) =&\frac{d_{0}E^{\delta }}{(1-\lambda )}\bigg [\frac{1}{s_{2}-s_{1}}\Big \{1-\left( \frac{s_{1}+s_{2}}{2s_{2}}\right) ^{1-\lambda }\Big \}\\&-\frac{1}{s_{3}-s_{2}}\Big \{1-\left( \frac{s_{2}+s_{3}}{2s_{2}}\right) ^{1-\lambda }\Big \}\bigg ] \end{aligned} \end{aligned}$$

Also for \(s_{1}\rightarrow s_{2}\) and \(s_{3}\rightarrow s_{2}\), \(I(D) \Rightarrow d_{0}E^{\delta }s_{2}^{-\lambda } \Rightarrow \) crisp demand rate. However, for the objective function the index value is given by

$$\begin{aligned} \begin{aligned} I(z)&=\frac{1}{2T}\Big [\delta _{11}+\delta _{31}+\frac{1}{2}\big (\frac{1}{\lambda _{11}}-\frac{1}{\lambda _{21}}\big )\Big ]\\&\quad +\frac{d_{0}E^{\delta }}{2T}\int _{0}^{1}[\Big (\frac{\alpha }{\lambda _{17}} +\delta _{17}\Big )^{-\lambda } \left( \delta _{35}-\frac{\alpha }{\lambda _{25}}\right) \\&\quad +\Big (\delta _{37}-\frac{\alpha }{\lambda _{27}}\Big )^{-\lambda }\left( \frac{\alpha }{\lambda _{15}}+\delta _{15}\right) \Big ]d\alpha \\&\quad +\frac{d_{0}E^{\delta }}{T}\Big \{\frac{(1+m)^2}{2T}log\left( \frac{1+m}{1+m-T}\right) +\frac{T}{4} - \frac{(1+m)}{2}\Big \}\\&\quad \int _{0}^{1}\Big [\left( \frac{\alpha }{\lambda _{12}}+\delta _{12}\right) \Big (\delta _{37}-\frac{\alpha }{\lambda _{27}}\Big )^{-\lambda } +\left( \delta _{32}-\frac{\alpha }{\lambda _{22}}\right) \Big (\frac{\alpha }{\lambda _{17}}\\&\quad +\delta _{17}\Big )^{-\lambda } \Big ]d\alpha +\frac{\lambda ^{'}}{2T}\Big [\left( \frac{\alpha }{\lambda _{16}}+\delta _{16}\right) ^{\lambda +1}\\&\quad +\left( \delta _{36}-\frac{\alpha }{\lambda _{26}}\right) ^{\lambda +1}\Big ] +\frac{\lambda ^{'}T}{4}\int _{0}^{1}\Big [\left( \frac{\alpha }{\lambda _{13}} +\delta _{13}\right) \left( \frac{\alpha }{\lambda _{16}}+\delta _{16}\right) ^{\lambda }\\&\quad +\left( \delta _{33}-\frac{\alpha }{\lambda _{23}}\right) \left( \delta _{36}-\frac{\alpha }{\lambda _{26}}\right) ^{\lambda }\Big ]d\alpha \\&\quad +\frac{d_{0}E^{\delta }}{2}\Big \{\frac{1+m}{T} log\left( \frac{1+m}{1+m-T}\right) -1 \Big \}\\&\quad \int _{0}^{1}\Big [\left( \frac{\alpha }{\lambda _{14}}+\delta _{14}\right) \Big (\delta _{37} -\frac{\alpha }{\lambda _{27}}\Big )^{-\lambda }\\&\quad +\left( \delta _{34}-\frac{\alpha }{\lambda _{24}}\right) \Big (\frac{\alpha }{\lambda _{17}}+\delta _{17}\Big )^{-\lambda } \Big ]d\alpha \end{aligned} \end{aligned}$$

Now, 1st term\(= \frac{1}{2T}\Big [\delta _{11}+\delta _{31}+\frac{1}{2}\big (\frac{1}{\lambda _{11}}-\frac{1}{\lambda _{21}}\big )\Big ]\). As \(Cs_{1}^{'}\rightarrow Cs_{1}\) and \(Cs_{3}^{'}\rightarrow Cs_{3}\), 1st term \(\rightarrow \frac{Cs_{1}+6Cs_{2}+Cs_{3}}{8T} \rightarrow \frac{Cs_{2}}{T}\) as \(Cs_{1}\rightarrow Cs_{2}\), \(Cs_{3}\rightarrow Cs_{2}\). 2nd term\(=\frac{d_{0}E^{\delta }}{2T}\int _{0}^{1}[\Big (\frac{\alpha }{\lambda _{17}}+\delta _{17}\Big )^{-\lambda } (\delta _{35}-\frac{\alpha }{\lambda _{25}})+\Big (\delta _{37}-\frac{\alpha }{\lambda _{27}}\Big )^{-\lambda } (\frac{\alpha }{\lambda _{15}}+\delta _{15})\Big ]d\alpha \)

$$\begin{aligned} \begin{aligned}&=\frac{d_{0}E^{\delta \lambda _{27}}}{2T}\bigg [-\frac{\delta _{15}}{1-\lambda }\{\Big (\delta _{37} -\frac{1}{\lambda _{27}}\Big )^{1-\lambda }-\delta _{37}^{1-\lambda }\}\\&\quad +\frac{\lambda _{27}}{\lambda _{15}} \{\frac{\delta _{37}}{1-\lambda }\left[ \Big (\delta _{37}-\frac{1}{\lambda _{27}}\Big )^{1-\lambda }-\delta _{37}^{1-\lambda }\right] \\&\quad -\frac{1}{2-\lambda }\left[ \Big (\delta _{37}-\frac{1}{\lambda _{27}}\Big )^{2-\lambda }\right. \\&\quad \left. -\delta _{37}^{2-\lambda }\right] \}\bigg ]+\frac{d_{0}E^{\delta \lambda _{17}}}{2T}\bigg [\frac{\delta _{35}}{1-\lambda } \Big \{(\Big (\frac{1}{\lambda _{17}}\\&\quad +\delta _{17}\Big )^{1-\lambda } -\delta _{17}^{1-\lambda }\Big \}-\frac{\lambda _{17}}{\lambda _{25}(2-\lambda )}\Big \{\Big (\frac{1}{\lambda _{17}} +\delta _{17}\Big )^{2-\lambda }-\delta _{17}^{2-\lambda }\Big \}\\&\quad +\frac{\lambda _{17}\delta _{17}}{\lambda _{25}(1-\lambda )} \Big \{\Big (\frac{1}{\lambda _{17}}+\delta _{17}\Big )^{1-\lambda }-\delta _{17}^{1-\lambda }\Big \} \bigg ] \end{aligned} \end{aligned}$$

As \(c_{11}^{'}\rightarrow c_{11}\), \(c_{13}^{'}\rightarrow c_{13}\), \(s_{1}^{'}\rightarrow s_{1}\) and \(s_{3}^{'}\rightarrow s_{3}\) 2nd terms becomes

$$\begin{aligned} \begin{aligned}&\frac{d_{0}E^{\delta }}{(s_{3}-s_{2})T}\bigg [\frac{c_{12}-c_{11}}{s_{3}-s_{2}}\Big \{\frac{s_{3}+s_{2}}{2(1-\lambda )}\Big (s_{2}^{1-\lambda }-(\frac{s_{2}+s_{3}}{2})^{1-\lambda }\Big )\\&\quad -\frac{1}{2-\lambda } \Big (s_{2}^{2-\lambda }-\left( \frac{s_{2}+s_{3}}{2}\right) ^{2-\lambda }\Big )\Big \}\\&\quad -\frac{c_{11}+c_{12}}{2(1-\lambda )}\Big (s_{2}^{1-\lambda }-\left( \frac{s_{2}+s_{3}}{2}\right) ^{1-\lambda }\Big )\bigg ]\\&\quad +\frac{d_{0}E^{\delta }}{(s_{2}-s_{1})T}\bigg [\frac{c_{13}+c_{12}}{2(1-\lambda )} \Big \{\Big (s_{2}^{1-\lambda }-\left( \frac{s_{2}+s_{1}}{2}\right) ^{1-\lambda }\Big )\\&\quad -\frac{c_{13}-c_{12}}{(s_{2}-s_{1})(2-\lambda )}\Big (s_{2}^{2-\lambda } -\left( \frac{s_{2}+s_{1}}{2}\right) ^{2-\lambda }\Big )\Big \}\\&\quad -\frac{(c_{13}-c_{12})(s_{2}+s_{1})}{(1-\lambda )(s_{2}-s_{1})} \Big (s_{2}^{1-\lambda }-\left( \frac{s_{2}+s_{1}}{2}\right) ^{1-\lambda }\Big )\bigg ] \end{aligned} \end{aligned}$$

Then \(c_{11}\rightarrow c_{12}\), \(c_{13}\rightarrow c_{12}\), \(s_{1}\rightarrow s_{2}\) and \(s_{3}\rightarrow s_{2}\), using L-Hospital rule we get the 2nd term \(\rightarrow \frac{d_{0}E^{\delta }}{T} c_{12}s_{2}^{-\lambda }\).

4th term\(=\frac{\lambda ^{'}}{2T}\Big [(\frac{\alpha }{\lambda _{16}}+\delta _{16})^{\lambda +1}+(\delta _{36} -\frac{\alpha }{\lambda _{26}})^{\lambda +1}\Big ]\). As \(p_{1}^{'}\rightarrow p_{1}\) and \(p_{3}^{'}\rightarrow p_{3}\),

$$\begin{aligned} \begin{aligned} \text{4th } \text{ term } =&\frac{\lambda ^{'}p_{2}^{2+\lambda }}{T(2+\lambda )}\bigg [\frac{1}{p_{2} -p_{1}}\Big \{1-\left( \frac{p_{1}+p_{2}}{2p_{2}}\right) ^{2+\lambda }\Big \}\\&-\frac{1}{p_{3} -p_{2}}\Big \{1-\left( \frac{p_{2}+p_{3}}{2p_{2}}\right) ^{2+\lambda }\Big \}\bigg ] \end{aligned} \end{aligned}$$

4th term \(\rightarrow \frac{\lambda ^{'}}{T}p_{2}^{1+\lambda }\) = crisp value, as \(p_{1}\rightarrow p_{2}\), \(p_{3}\rightarrow p_{2}\) by using L-Hospital rule.

5th term\(=\frac{\lambda ^{'}T}{4}\int _{0}^{1}\Big [(\frac{\alpha }{\lambda _{13}} +\delta _{13})(\frac{\alpha }{\lambda _{16}}+\delta _{16})^{\lambda }+(\delta _{33} -\frac{\alpha }{\lambda _{23}})(\delta _{36}-\frac{\alpha }{\lambda _{26}})^{\lambda }\Big ]d\alpha \) . As \(p_{1}^{'}\rightarrow p_{1}\), \(p_{3}^{'}\rightarrow p_{3}\), \(h_{s1}^{'}\rightarrow h_{s1}\) and \(h_{s3}^{'}\rightarrow h_{s3}\)

$$\begin{aligned} \begin{aligned} \text{5th } \text{ term }=&\frac{\lambda ^{'}Th_{s2}p_{2}^{1+\lambda }}{2(1+\lambda )}\bigg [\frac{1}{p_{2}-p_{1}} \Big \{1-\left( \frac{p_{1}+p_{2}}{2p_{2}}\right) ^{1+\lambda }\Big \}\\&-\frac{1}{p_{3}-p_{2}}\Big \{1 -\left( \frac{p_{2}+p_{3}}{2p_{2}}\right) ^{1+\lambda }\Big \}\bigg ] \end{aligned} \end{aligned}$$

5th term \(\rightarrow \lambda ^{'}Th_{s2}p_{2}^{1+\lambda }\) = crisp value, as \(p_{1}\rightarrow p_{2}\), \(p_{3}\rightarrow p_{2}\), \(h_{s1}\rightarrow h_{s2}\) and \(h_{s3}\rightarrow h_{s2}\) by using L-Hospital rule.

Similarly, the 3rd and 6th term tends to a crisp value. Therefore, I(z) becomes a crisp value.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, S., De, S.K. A supply and demand economic order quantity inventory model under pythagorean fuzzy environment. Sādhanā 48, 21 (2023). https://doi.org/10.1007/s12046-022-02046-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-022-02046-3

Keywords

Navigation