Skip to main content
Log in

Explicit solutions of the Schamel–KdV equation employing Darboux transformation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The aim of this paper is to derive a class of soliton solutions of the Schamel–KdV (SKdV) equation employing Darboux transformation with the help of the Lax pair. The SKdV equation is reduced to a suitable form by means of an effective transformation so that the Lax pair of the said equation can be derived using the Ablowitz–Kaup–Newell–Segur (AKNS) method. For the first time, we apply Darboux transformation through the Lax pair so as to obtain an effective solution to the SKdV equation, and this allows us to investigate new classes of soliton solutions of the SKdV equation. These solutions provide some new wave features, W-shaped soliton, breather-type soliton, etc. Effects of the nonlinear and dispersion coefficients are demonstrated numerically through two-dimensional graphs. Finally, for a better understanding of the dynamics of the model, some key three-dimensional plots of the wave solutions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K Vafai, Int. J. Heat Fluid Flow 11(3), 254 (1990)

    Article  Google Scholar 

  2. E Hosseinzadeh, A Barari, F Fouladi and G D Domairry, Therm. Sci. 14(4), 1101 (2010)

    Article  Google Scholar 

  3. W C Thacker, J. Fluid Mech. 107, 499 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  4. S B Yoon and P L F Liu, J. Fluid Mech. 205, 397 (1989)

    Article  ADS  Google Scholar 

  5. J W Miles, J. Fluid Mech. 76(2), 251 (1976)

    Article  ADS  Google Scholar 

  6. U Kânoğlu and C Synolakis, Phys. Rev. Lett. 97(14), 148501 (2006)

    Article  ADS  Google Scholar 

  7. S Roy, S Raut and R R Kairi, Pramana – J. Phys. 96(2), 67 (2022)

    Article  ADS  Google Scholar 

  8. A Saha, N Pal and P Chatterjee, Phys. Plasmas 21(10), 102101 (2014)

    Article  ADS  Google Scholar 

  9. S Raut et al, Int. J. Appl. Comput. Math. 7(6), 223 (2021)

    Article  Google Scholar 

  10. M Moshinsky, SIAM J. Appl. Math. 25(2), 193 (1973)

    Article  MathSciNet  Google Scholar 

  11. M Tildi and M Taki, Adv. Opt. Photon. 14(1), 87 (2022)

    Article  Google Scholar 

  12. D S Abrams and S Lloyd, Phys. Rev. Lett. 81(18), 3992 (1998)

    Article  ADS  Google Scholar 

  13. G Li, H Rabitz, J Anos and J Tóth, Chem. Eng. Sci. 49(3), 343 (1994)

    Article  Google Scholar 

  14. A C Atkinson and B Bogacka, Chem. Int. Labor. Syst. 61(1), 17 (2002)

    Article  Google Scholar 

  15. D Anderson, M Lisak and A A Berntson, Pramana – J. Phys. 57, 917 (2001)

    Article  ADS  Google Scholar 

  16. G B Whitham, Linear and nonlinear waves (Wiley, New York, 1974)

    MATH  Google Scholar 

  17. H Schamel, J. Plasma Phys. 9, 377 (1973)

    Article  ADS  Google Scholar 

  18. A Zemlyanukhin, I V Andrianov, A Bochkarev and L Mogilevich, Nonlinear Dyn. 98, 185 (2019)

    Article  Google Scholar 

  19. M G Kuzyk, Polymer fiber optics materials, physics and applications (CRC Press, Boca Raton, 2018)

    Book  Google Scholar 

  20. K Shimoda, Introduction to laser physics (Springer, Tokyo, 2013)

    Google Scholar 

  21. L Caban and A Tyliszczak, Appl. Sci. 12, 2203 (2022)

    Article  Google Scholar 

  22. R S Zola, J C Dias, E K Lenzi, L R Evangelista, M K Lenzi and L R da Silva, Physica A 387(12), 2690 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. M Guo, C Fu, Y Zhang, J Liu and H Yang, Complexity 2018, 6852548 (2018)

    Google Scholar 

  24. S Eule and R Friedrich, Phys. Lett. A 351, 238 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. H A Ghany and M Zakarya, Phys. Res. Int. 2014, 32334 (2014)

  26. S Guo, L Mei, Y He and Y Li, Phys. Lett. A 380, 1031 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. J Lighthill, J. Acoust. Soc. Am. 61(3), 391 (1978)

    Google Scholar 

  28. S Roy, S Saha, S Raut and A N Das, J. Appl. Math. Comput. Mech. 20(2), 65 (2021)

    Article  MathSciNet  Google Scholar 

  29. S Raut, S Roy, S Saha and A N Das, Plasma Phys. Rep. 48(6), 627 (2022)

    Article  ADS  Google Scholar 

  30. S Raut, S Roy, S Saha and A N Das, Int. J. Appl. Comput. Math. 8(4), 196 (2022)

    Article  Google Scholar 

  31. J Lee and R Sakthivel, Rep. Math. Phys. 68, 153 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  32. K U Tariq, M Inc, M Yepez-Martinez and M M Khater, J. Ocean Eng. Sci., (2022)

  33. N O Al Atawi, J. Math. Res. 9(5) (2017)

  34. A H Abdel Aty, J. Inf. Sci. Eng. 36(6), 1279 (2020)

    Google Scholar 

  35. F Kangalgil, J. Egypt. Math. Soc. 24(4), 526 (2016)

    Article  MathSciNet  Google Scholar 

  36. A M Wazwaz, Math. Comput. Mod. 40, 499 (2004)

    Article  Google Scholar 

  37. S Singh, L Kaur, R Sakthivel and K Murugesan, Physica A 560, 125114 (2020)

    Article  MathSciNet  Google Scholar 

  38. J H He and X H Wu, Chaos Solitons Fractals 30(3), 700 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  39. R Hirota, Phys. Rev. Lett. 27, 1192 (1971)

    Article  ADS  Google Scholar 

  40. S Singh, K Sakkaravarthi, K Murugesan and R Sakthivel, Eur. Phys. J. Plus 135(10), 1 (2020)

    Google Scholar 

  41. S Roy, S Raut, R R Kairi and P Chatterjee, Nonlinear Dyn. 111(6), 5721 (2023)

  42. S Roy, S Raut, R R Kairi and P Chatterjee, Eur. Phys. J. Plus 137(5), 1–14 (2022)

    Google Scholar 

  43. Y Chen, E Fan and M Yuen, Phys. Lett. A 380, 9 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  44. B Xue, F Li and H Wang, Appl. Math. Comput. 269, 326 (2015)

  45. X Geng and H W Tam, J. Phys. Soc. Jpn. 68, 1508 (1999)

    Article  ADS  Google Scholar 

  46. L Ling, L C Zhao and B Guo, Nonlinearity 28, 3243 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  47. M I Bueno and F Marcellan, Linear Algebra Appl. 384, 215 (2004)

    Article  MathSciNet  Google Scholar 

  48. P G Estevez, J. Math. Phys. 40, 1406 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  49. X Chen, Ann. Probab. 44(2), 1535 (2016)

    Article  MathSciNet  Google Scholar 

  50. H Z Liu and L X Zhang, Chin. Phys. B 27, 040202 (2018)

    Article  ADS  Google Scholar 

  51. X L Gai, Y T Gao, Z Y Sun, X Yu, Y Liu and D X Meng, J. Phys. A 43, 455205 (2010)

  52. Y Zhang, J Li and Y N Lv, Ann. Phys. 323, 3059 (2008)

    Article  ADS  Google Scholar 

  53. X W Guan, M S Wang and S D Yang, Nucl. Phys. B 485(3), 685 (1997)

    Article  ADS  Google Scholar 

  54. G Darboux (1999), arXiv preprint arXiv: physics/9908003

  55. D Kennefick, A Johnson and K Glampedakis, Phys. Rev. D 96, 024036 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the reviewers for their valuable comments and suggestions which helped to improve the quality of the paper. There is no funding for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Raut.

Ethics declarations

Code availability

Mathematica codes for drawing the graphs are available.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, P., Saha, D., Wazwaz, AM. et al. Explicit solutions of the Schamel–KdV equation employing Darboux transformation. Pramana - J Phys 97, 172 (2023). https://doi.org/10.1007/s12043-023-02657-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02657-3

Keywords

PACS

Navigation