Skip to main content
Log in

Dissipative learning of a quantum classifier

  • Published:
Pramana Aims and scope Submit manuscript

A Correction to this article was published on 08 April 2024

This article has been updated

Abstract

The expectation that quantum computation might bring performance advantages in machine learning algorithms motivates the work on the quantum versions of artificial neural networks. In this study, we analyse the learning dynamics of a quantum classifier model that works as an open quantum system which is an alternative to the standard quantum circuit model. According to the obtained results, the model can be successfully trained with a gradient descent (GD)-based algorithm. The fact that these optimisation processes have been obtained with continuous dynamics, shows promise for the development of a differentiable activation function for the classifier model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. W S McCulloch and W Pitts, Bull. Math. Biophys. 5, 115 (1943)

    Article  MathSciNet  Google Scholar 

  2. F Rosenblatt, Psychol. Rev. 65, 386 (1958)

    Article  Google Scholar 

  3. J Misra and I Saha, Neurocomputing 74, 239 (2010)

    Article  Google Scholar 

  4. J Gu, Z Wang, J Kuen, L Ma, A Shahroudy, B Shuai, T Liu, X Wang, G Wang, J Cai and T Chen, Pattern Recognit. 77, 354 (2018)

    Article  ADS  Google Scholar 

  5. J Schmidhuber, Neural Netw. 61, 85 (2015)

    Article  Google Scholar 

  6. C H Bennett and D P DiVincenzo, Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  7. A Montanaro, NPJ Quantum Inf. 2, 15023 (2016)

  8. L Banchi, N Pancotti and S Bose, NPJ Quantum Inf. 2, 16019 (2016)

  9. A Y Yamamoto, K M Sundqvist, P Li and H R Harris, Quantum Inf. Process. 17, 128 (2018)

    Article  ADS  Google Scholar 

  10. F Tacchino, C Macchiavello, D Gerace and D Bajoni, NPJ Quantum Inf. 5, 1 (2019)

    Article  Google Scholar 

  11. E Torrontegui and J J García-Ripoll, EPL 125, 30004 (2019)

    Article  ADS  Google Scholar 

  12. S Mangini, F Tacchino, D Gerace, D Bajoni and C Macchiavello, EPL 134, 10002 (2021)

    Article  ADS  Google Scholar 

  13. S Yan, H Qi and W Cui, Phys. Rev. A 102, 052421 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. M Pechal, F Roy, S A Wilkinson, G Salis, M Werninghaus, M J Hartmann and S Filipp, Phys. Rev. Res. 4, 033190 (2022)

    Article  Google Scholar 

  15. T Nguyen, I Paik, Y Watanobe and T C Thang, Electronics 11, 437 (2022)

    Article  Google Scholar 

  16. D Türkpençe, T Ç Akıncı and S Şeker, Phys. Lett. A 383, 1410 (2019)

    Article  ADS  Google Scholar 

  17. U Korkmaz and D Türkpençe, Phys. Lett. A 426, 127887 (2022)

    Article  Google Scholar 

  18. U Korkmaz, C Sanga and D Türkpençe, 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) 105 (2021)

  19. U Korkmaz, C Sanga and D Türkpençe, LNICST 436, 159 (2022)

    Google Scholar 

  20. F Verstraete, M M Wolf and J Ignacio Cirac, Nat. Phys. 5, 633 (2009)

    Article  Google Scholar 

  21. S Deffner and C Jarzynski, Phys. Rev. X 3, 041003 (2013)

    Google Scholar 

  22. S Deffner, Phys. Rev. E 88, 062128 (2013)

    Article  ADS  Google Scholar 

  23. M Ziman, P Štelmachovič, V Bužek, M Hillery, V Scarani and N Gisin, Phys. Rev. A 65, 042105 (2002)

    Article  ADS  Google Scholar 

  24. R Blume-Kohout and W H Zurek, Found. Phys. 35, 1857 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. M Zwolak and W H Zurek, Phys. Rev. A 95, 030101 (2017)

    Article  ADS  Google Scholar 

  26. V Scarani, M Ziman, P Žtelmachovič, N Gisin and V Bužek, Phys. Rev. Lett. 88, 097905 (2002)

    Article  ADS  Google Scholar 

  27. D Nagaj, P Štelmachovič, V Bužek and M Kim, Phys. Rev. A 66, 062307 (2002)

    Article  ADS  Google Scholar 

  28. P Krantz, M Kjaergaard, F Yan, T P Orlando, S Gustavsson and W D Oliver, Appl. Phys. Rev. 6, 021318 (2019)

    Article  ADS  Google Scholar 

  29. K H Wan, O Dahlsten, H Kristjánsson, R Gardner and M S Kim, NPJ Quantum Inf. 3, 36 (2017)

    Article  ADS  Google Scholar 

  30. S Ruder, arXiv:1609.04747 [cs] (2017)

  31. M O Scully, M S Zubairy, G S Agarwal and H Walther, Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  32. D Karevski and T Platini, Phys. Rev. Lett. 102, 207207 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Scientific and Technological Research Council of Turkey (TÜBİTAK-Grant No. 120F353). The authors also wish to extend special thanks to the Cognitive Systems Lab in the Department of Electrical Engineering for providing the atmosphere for motivational and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ufuk Korkmaz.

Additional information

The original online version of this article was revised to retecify the Junk character error in the author name Deniz Türkpençe.

Appendix A. Derivation of the cost function

Appendix A. Derivation of the cost function

In this section, we present the mathematical justifications for numerical calculations in the text. First, we substitute \(\nu =g\) in eq. (19)

$$\begin{aligned} \delta {g}_i=-\eta \frac{\partial C}{\partial {g}_i} \end{aligned}$$
(A.1)

and obtain the expression for cost function by taking the partial derivative with respect to the coupling constant g.

$$\begin{aligned} \frac{\partial C}{\partial {g}_i}=(\langle \sigma _z^0\rangle _{\textrm{des}}^{ss}-\langle \sigma _z^0\rangle _{\textrm{act}}^{ss})\bigg (-\frac{\partial \langle \sigma _z^0\rangle _{\textrm{act}}^{ss}}{\partial {g}_i}\bigg ). \end{aligned}$$
(A.2)

In our current example, we have two information reservoirs corresponding to specific magnetisations. Therefore, the actual steady-state magnetisation (eq. (13)) reads as

$$\begin{aligned} A=\langle \sigma _z^0\rangle _{\textrm{act}}^{ss}=\frac{g_{1}^{2}\langle \sigma _z^1\rangle +g_{2}^{2}\langle \sigma _z^2\rangle }{g_{1}^{2}+g_{2}^{2}}. \end{aligned}$$
(A.3)

According to the recipe to derive the cost function, the partial derivatives with respect to \(g_1\) and \(g_2\) separately are obtained as

$$\begin{aligned}&\frac{\partial A}{\partial {g}_1}=\frac{2g_{1}\langle \sigma _z^1\rangle (g_{1}^{2}+g_{2}^{2})-2g_{1}(g_{1}^{2}\langle \sigma _z^1\rangle +g_{2}^{2}\langle \sigma _z^2\rangle )}{(g_{1}^{2}+g_{2}^{2})^{2}}\nonumber \\&\frac{\partial A}{\partial {g}_2}=\frac{2g_{2}\langle \sigma _z^2\rangle (g_{1}^{2}+g_{2}^{2})-2g_{2}(g_{1}^{2}\langle \sigma _z^1\rangle +g_{2}^{2}\langle \sigma _z^2\rangle )}{(g_{1}^{2}+g_{2}^{2})^{2}}. \end{aligned}$$
(A.4)

In our example, the desired magnetisation \(\langle \sigma _z^0\rangle _{\textrm{des}}^{ss}=0.4\) is a constant value in the cost function. Using the expression (A.1), (A.2), (A.3) and (A.4), eq. (18) in expressed as follows:

$$\begin{aligned}&(g_1)_{k+1}=(g_1)_{k}+\delta (g_1)_{k}\nonumber \\&(g_2)_{k+1}=(g_2)_{k}+\delta (g_2)_{k}. \end{aligned}$$
(A.5)

Next, we substitute \(\nu =\theta \) in eq. (19) as

$$\begin{aligned} \delta {\theta }_i=-\eta \frac{\partial C}{\partial {\theta }_i}. \end{aligned}$$
(A.6)

Regarding eq. (15), one can easily see that the magnetisation of the ith reservoir is \(\langle \sigma _z\rangle _i=\langle \sigma _{i}^+\sigma _{i}^-\rangle - \langle \sigma _{i}^-\sigma _{i}^+\rangle \). Therefore, azimuth parameter-dependent expression of the magnetisation can be easily written as \(\langle \sigma _z\rangle _i=\cos \theta _{i}\).

Equation (A.7) is obtained when we take the partial derivative of the cost function with respect to \(\theta \).

$$\begin{aligned} \frac{\partial C}{\partial {\theta }_i}=(\langle \sigma _z^0\rangle _{\textrm{des}}^{ss}-\langle \sigma _z^0\rangle _{\textrm{act}}^{ss})\bigg (-\frac{\partial \langle \sigma _z^0\rangle _{\textrm{act}}^{ss}}{\partial {\theta }_i}\bigg ). \end{aligned}$$
(A.7)

In our current example, we have two information reservoirs corresponding to specific magnetisations. Therefore, the actual steady-state magnetisation (eq. (13)) reads as

$$\begin{aligned} A=\langle \sigma _z^0\rangle _{\textrm{act}}^{ss}=\frac{g_{1}^{2}\cos \theta _{1}+g_{2}^{2}\cos \theta _{2}}{g_{1}^{2}+g_{2}^{2}}. \end{aligned}$$
(A.8)

According to the recipe to derive the cost function, the partial derivatives with respect to \(\theta _{1}\) and \(\theta _{2}\) separately are obtained as

$$\begin{aligned}&\frac{\partial A}{\partial {\theta }_1}=-\frac{g_{1}^{2}\sin \theta _{1}}{g_{1}^{2}+g_{2}^{2}}\nonumber \\&\frac{\partial A}{\partial {\theta }_2}=-\frac{g_{2}^{2}\sin \theta _{2}}{g_{1}^{2}+g_{2}^{2}}. \end{aligned}$$
(A.9)

In our example, the desired magnetisation \(\langle \sigma _z^0\rangle _{\textrm{des}}^{ss}=0\) a constant value in the cost function. Using the expression (A.6), (A.7), (A.8) and (A.9), eq. (A.7) is expressed as follows,

$$\begin{aligned}&\mathbf {(\theta )}_{k+1}=\mathbf {(\theta _1)}_{k}+\delta \mathbf {(\theta _1)}_{k}\nonumber \\&\mathbf {(\theta _2)}_{k+1}=\mathbf {(\theta _2)}_{k}+\delta \mathbf {(\theta _2)}_{k}. \end{aligned}$$
(A.10)

Let us edit eq. (18) for \(\nu =\phi \)

$$\begin{aligned} \delta {\phi }_i=-\eta \frac{\partial C}{\partial {\phi }_i}. \end{aligned}$$
(A.11)

Equation (A.12) is obtained when we take the partial derivative of the cost function with respect to \(\phi \).

$$\begin{aligned} \frac{\partial C}{\partial {\phi }_i}=(\langle \sigma _y^0\rangle _{\textrm{des}}^{ss}-\langle \sigma _y^0\rangle _{\textrm{act}}^{ss})\bigg (-\frac{\partial \langle \sigma _y^0\rangle _{\textrm{act}}^{ss}}{\partial {\phi }_i}\bigg ). \end{aligned}$$
(A.12)

In our current example, we have two information reservoirs corresponding to specific magnetisations. Therefore, the actual steady-state magnetisation (eq. (13)) by using eq. (15) reads as

$$\begin{aligned}{} & {} A=\langle \sigma _y^0\rangle _{\textrm{act}}^{ss}\nonumber \\ {}{} & {} \quad =-r\tau \frac{g_{1}^{3}\sin \theta _{1}\cos \theta _{1}\cos \phi _{1}+g_{1}g_{2}^{2}\sin \theta _{1}\cos \theta _{2}\cos \phi _{1}+g_{1}^{2}g_{2}\cos \theta _{1}\sin \theta _{2}\cos \phi _{2}+g_{2}^{3}\sin \theta _{2}\cos \theta _{2}\cos \phi _{2}}{g_{1}^{2}+g_{2}^{2}}.\nonumber \\ \end{aligned}$$
(A.13)

According to the recipe to derive the cost function, the partial derivatives with respect to \(\phi _{1}\) and \(\phi _{2}\) separately are obtained as

$$\begin{aligned}&\frac{\partial A}{\partial {\phi }_1}=r\tau \frac{g_{1}^{3}\sin \theta _{1}\cos \theta _{1}\sin \phi _{1}+g_{1}g_{2}^{2}\sin \theta _{1}\cos \theta _{2}\sin \phi _{1}}{g_{1}^{2}+g_{2}^{2}}\nonumber \\&\frac{\partial A}{\partial {\phi }_2}=r\tau \frac{g_{1}^{2}g_{2}\cos \theta _{1}\sin \theta _{2}\sin \phi _{2}+g_{2}^{3}\sin \theta _{2}\cos \theta _{2}\sin \phi _{2}}{g_{1}^{2}+g_{2}^{2}}. \end{aligned}$$
(A.14)

In our example, the desired magnetisation is \(\langle \sigma _y^0\rangle _{\textrm{des}}^{ss}=0\) a constant value in the cost function. Using the expression (A.6), (A.12), (A.13) and (A.14)

$$\begin{aligned}&\mathbf {(\phi )}_{k+1}=\mathbf {(\phi _1)}_{k}+\delta \mathbf {(\phi _1)}_{k}\nonumber \\&\mathbf {(\phi _2)}_{k+1}=\mathbf {(\phi _2)}_{k}+\delta \mathbf {(\phi _2)}_{k}. \end{aligned}$$
(A.15)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkmaz, U., TÜRKPENÇE, D. Dissipative learning of a quantum classifier. Pramana - J Phys 97, 165 (2023). https://doi.org/10.1007/s12043-023-02653-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02653-7

Keywords

PACS Nos

Navigation